以土壤毛管水力特征曲线为基础,通过数值模拟手段,计算分析地下水位线变化对水平换热埋管换热特性、土体热失衡风险和热泵机组技术经济特性的影响规律,并提出“单位热影响面积换热量”这一新的评价指标,讨论土壤水力学特征对水平埋管换热能力的影响规律。研究结果表明:随着地下水位线埋深变浅,埋管水平土壤含水饱和度从12%增加到100%时,在制冷工况下,水平管延米换热量增加了30%,出口水温降低了23%,单位热影响面积换热量提高了47%;制热工况下,水平管延米换热量增加了24%,出口水温升高了25%,单位热影响面积换热量提高了39%。地下水位线埋深和土壤中含水饱和度对水平埋管换热器地下换热效率影响显著。同时,不同水力特征曲线的蓄能土体热失衡风险具有差异性。
Abstract
Based on the capillary water retention curve of the soil, this paper used the numerical modeling approach to investigate the influence of variation of water table on the heat exchange performance of horizontal pipes, heat imbalance risks of the energy storage soils and the techno-economic of heat pump. A new concept named “heat exchange per thermal impacted area” was proposed in this paper. The study results demonstrate that, as the water table depth reduces, and the soil water content increases from 12% to 100%, in the cooling mode, the heat transfer per meter of the horizontal pipe increases by 30%, the outlet water temperature decreases by 23%, and the heat exchange per thermal impacted area increased by 47%; in the heating mode, the heat transfer per meter of the horizontal pipe increases by 24%, the outlet water temperature ratio increases by 25%, and the heat exchange per thermal impacted area increases by 39%. The influence of variation in water table and water soil content is very obvious. Also, the difference of heat imbalance risk in soils under different water retention curves are discussed.
关键词
地下水 /
土壤水 /
地源热泵 /
水力特征曲线 /
热失衡
Key words
groundwater /
soil moisture /
ground source heat pumps /
soil water characteristic curve /
heat imbalance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王亮, 邹勤, 刘东. 地源热泵系统地埋管群分区运行控制策略研究[J]. 太阳能学报, 2017, 38(1): 127-133.
WANG L, ZOU Q, LIU D.Ground source heat pump system buried nest of tubes partition operating control strategy[J]. Acta energies solaris sinica, 2017, 38(1): 127-133.
[2] 吕艺青, 傅允准. 地源热泵系统夏季制冷间歇运行特性实验研究[J]. 太阳能学报, 2018, 39(2): 453-460.
LYU Y Q, FU Y Z.Experimental research of performance for refrigeration intermittent operation in summer of GSHP system[J]. Acta energies solaris sinica, 2018, 39(2): 453-460.
[3] 马最良, 吕悦. 地源热泵系统设计与应用[M]. 北京: 机械工业出版社, 2013.
MA Z L, LYU Y.Design and application of ground source heat pump system[M]. Beijing: Machinery Industry Press, 2013.
[4] LEONG W H, TARNAWSKI V R, AITTOMAKI A.Effect of soil type and moisture content on ground heat pump performance[J]. International journal of refrigeration, 1998, 21(8): 595-606.
[5] NOWAMOOZ H, NIKOOSOKHAN S, LIN J, et al.Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties[J]. Renewable energy, 2015, 74: 7-15.
[6] PLATTS A B, CAMERON D A, WARD J.Improving the performance of ground coupled heat exchangers in unsaturated soils[J]. Energy buildings, 2015, 104: 323-335.
[7] 李广信, 张丙印. 土力学[M]. 北京: 清华大学出版社, 2013.
LI G X, ZHANG B Y.Soil mechanics[M]. Beijing:Tsinghua University Press, 2013.
[8] LU N, LIKOS W J.Unsaturated Soil Mechanics[M]. Hoboken: John Wiley & Sons, Inc. 2004.
[9] CHOI J C, LEE S R, LEE D S.Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J]. Computers and geotechnics, 2011, 38(8): 949-958.
[10] 徐绍辉, 张佳宝, 刘建立, 等. 表征土壤水分持留曲线的几种模型的适应性研究[J]. 土壤学报, 2002, 39(4): 498-504.
XU S H, ZHANG J B, LIU J L, et al.Study on adaptability of several models for soil water retention curve[J]. Acta pedologica sinica, 2002, 39(4): 498-504.
[11] 姚其华, 邓银霞. 土壤水分特征曲线模型及其预测方法的研究进展[J]. 土壤通报, 1992, 23(3): 142-145.
YAO Q H, DENG Y X.Research progress of soil water characteristic curve model and its prediction method[J]. Soil bulletin, 1992, 23(3): 142-145.
[12] 许迪, SCHMID R, HERMOUD A.土壤水力学特性试验方法比较及其模拟验证[J]. 水利学报, 1997, 28(8): 49-56.
XU D, SCHMID R, HERMOUD A.Comparison and field test of the experimental methods for determining soil hydraulic properties[J]. Journal of water conservancy, 1997, 28(8): 49-56.
[13] VAN GENUCHTEN M TH. A closed-form equation for predicting the hydraulic conductivity of Unsaturated soils[J]. soil Science of America journal, 1980, 44(5): 892-898.
[14] 钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996.
QIAN J H, YIN Z Z.Geotechnical principle and calculation[M]. Beijing: China Water Conservancy and Hydropower Press, 1996.
[15] 李恩羊. 达西定律及其在非饱和土壤中的推广应用[J]. 农田水利与小水电, 1981(1): 42-44, 31.
LI E Y.Darcy’s law and its application in unsaturated soil[J]. Farmland water conservancy and small hydropower, 1981(1): 42-44, 31.
[16] ZHOU W S, PEI P, HAO D Y, et al.A numerical study on the performance of ground heat exchanger buried in fractured rock bodies[J]. Energies, 2020, 13: 1647.
[17] 张玲. 土壤热湿传递与土壤源热泵的理论与实验研究[D]. 杭州: 浙江大学, 2007.
ZHANG L.Theoretical and experimental study on heat and moisture transfer in soil and ground-source heat pump[D]. Hangzhou: Zhejiang University, 2007.
[18] 陈振乾, 施明恒. 研究土壤热湿迁移特性的非平衡热力学方法[J]. 土壤学报, 1998, 35(2): 218-226.
CHEN Z Q, SHI M H.Non-Equilibrium thermodynamics method of heat and moisture transport properties in unsaturated soils[J]. Acta pedologica sinica, 1998, 35(2): 218-226.
[19] 韩春苗, 甘永德. 土石混合介质中碎石性质对土壤水分特征曲线的影响分析[J]. 中国农村水利水电, 2018(8): 86-90.
HAN C M, GAN Y D.Effects of the gravel physical properties of the soil-gravel media on the water retention curve[J]. Rural water conservancy and hydropower in China, 2018(8): 86-90.
[20] GB 50336—2005, 地源热泵系统工程技术规范[S].
GB 50336—2005, Engineering technical specification for ground source heat pump system[S].
[21] HEIN P, KOLDITZ O, GÖRKE U, et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J]. Applied thermal engineering, 2016, 100: 421-433.
[22] CASASSO A, SETHI R.Efficiency of closed loop geothermal heat pumps: A sensitivity analysis[J]. Renewable energy, 2014, 62: 737-746.
[23] SHAO H, HEIN P, SACHSE A, et al.Geoenergy modeling II: shallow geothermal systems[M]. Berlin: Springer International publishing, 2016.
[24] TANG F J, NOWAMOOZ H.Factors influencing the performance of shallow borehole heat exchanger[J]. Energy conversion and management, 2019, 181: 571-583.
[25] TANG F J, NOWAMOOZ H.Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region[J]. Renewable energy, 2018, 128: 210-222.
基金
国家自然科学基金(51864008; 52066005); 贵州省科技支撑计划(黔科合支撑[2020]2Y025); 贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]117)