利用共沉淀一步法在常温下合成具有高光催化活性的ZnxCd1-xS固溶体光催化剂,用XRD、SEM、XPS、BET、UV-VIS DRS和PL对制备出的ZnxCd1-xS样品进行结构和光学性能的表征,并在模拟太阳光照射下对罗丹明B(RhB)溶液进行降解,评价其光催化活性。结果表明,ZnxCd1-xS对可见光的吸收阀值随Zn含量增加而减少,禁带宽度随之增大;颗粒状ZnxCd1-xS固溶体对罗丹明B具有较高的光催化活性,其中Zn0.8Cd0.2S的光催化性能最优,在90 min内对RhB的降解率达到98.5%,远高于CdS和ZnS光催化剂;经过4次重复使用后,Zn0.8Cd0.2S对RhB的降解率维持在75%以上。Zn0.8Cd0.2S的比表面积和孔隙体积相对于CdS分别增至154.6 m2/g和0.40 cm3/g,其光催化活性显著增强的主要原因是由于其较高的光生电子空穴对的分离效率及较低的复合率。
Abstract
ZnxCd1-xS solid solution photocatalysts with high photocatalytic activity were prepared by the coprecipitation one-step method at room temperature. The structural and optical properties of the as-prepared samples were characterized by XRD, SEM, XPS, BET, UV-VIS DRS and PL. Photocatalytic activity of the samples was evaluated via degrading the Rhodamine B solution under simulated sunlight. The results show that the visible light absorption threshold of ZnxCd1-xS decreases with the increase of Zn, while the band gap increases gradually. Moreover, the granular ZnxCd1-xS exhibits excellent photocatalytic activity for the degradation of Rhodamine B, and Zn0.8Cd0.2S has the best photocatalytic performance among the as-prepared samples. The degradation rate of Zn0.8Cd0.2S for Rhodamine B reaches 98% within 90 min, which is much higher than that of CdS and ZnS. After four recycles, the RhB degradation is still more than 75%. Compared with CdS, the specific surface area and pore volume of Zn0.8Cd0.2S increase to 154.6 m2/g and 0.40 cm3/g, respectively. The main reasons for the enhanced photocatalytic activity are the effective separation efficiency of photogenerated electron-hole pairs and the lower recombination rate.
关键词
共沉淀 /
罗丹明B /
降解 /
ZnxCd1-xS /
光催化活性
Key words
coprecipitation /
Rhodamine B /
degradation /
ZnxCd1-xS /
photocatalytic activity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 苏进展, 张涛, 王璐, 等. 核壳结构CdS/ZnS微米球表面处理与光催化制氢性能的关系[J]. 催化学报, 2017, 38(3): 489-497.
SU J Z, ZHANG T, WANG L, et al.Surface treatment effect on the photocatalytic hydrogen generation of CdS/ZnS core-shell microstructures[J]. Chinese journal of catalysis, 2017, 38(3): 489-497.
[2] ZHANG L, JIANG D C, IRFAN R M, et al.Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution[J]. Journal of energy chemistry, 2019, 30: 71-77.
[3] ZHANG K J, XU H, YANG C G, et al.A facile approach for the synthesis of ZnxCd1-xS/C nanocomposite to enhance photocatalytic activity[J]. Materials science in semiconductor processing, 2020, 107: 104802.
[4] XU L, LIANG H W, YANG Y, et al.Stability and reactivity: Positive and negative aspects for nanoparticle processing[J]. Chemical reviews, 2018, 118(7): 3209.
[5] YUAN Y J, CHEN D Q, YU Z T, et al.Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production[J]. Journal of materials chemistry, 2018, 6(25): 11606-11630.
[6] WEI Z D, XU M Q, LIU J Y, et al.Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis[J]. Chinese journal of catalysis, 2020, 41(1): 103-113.
[7] CHAN C C, CHANG C C, HSU C H, et al.Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation[J]. International journal of hydrogen energy, 2014, 39(4): 1630-1639.
[8] HUANG D L, WEN M, ZHOU C Y, et al.ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction[J]. Applied catalysis B-environmental, 2020, 267: 118651.
[9] 朱姗, 王晟, 刘福生, 等. 固溶体ZnxCd1-xS光催化降解甲基橙水溶液[J]. 南京工业大学学报(自然科学版), 2014, 36(6): 23-30, 65.
ZHU S, WANG S, LIU F S, et al.ZnxCd1-xS for degradation of methyl orange solution[J]. Journal of Nanjing Technology University(natural science), 2014, 36(6): 23-30, 65.
[10] DEL V F, ISHIKAVA A, DOMEN K, et al.Influence of Zn concentration in the activity of Cd1-xZnxS solid solutions for water splitting under visible light[J]. Catalysis today, 2009, 143(1-2): 51-56.
[11] JIANG Z, XIAO C, YIN X Y, et al.Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceramics international, 2020, 46(8): 10771-10778.
[12] 胡黎明, 闫俊涛, 王春蕾,等. 电纺法构筑高光催化活性的Z型TiO2/g-C3N4/RGO三元异质结[J]. 催化学报, 2019, 40(3): 458-469.
HU L M, YAN J T, WANG C L, et al.Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance[J]. Chinese journal of catalysis, 2019, 40(3): 458-469.
[13] KUMAR N, SEN A, RAJENDRAN K, et al.Morphology and phase tuning of alpha-and beta-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour[J]. RSC advances, 2017, 7(40): 25041-25053.
[14] CHEN Y C, HUANG Y S, HUANG H, et al.Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles[J]. Nano energy, 2020, 67: 104225.
[15] WANG C Y, ZHANG X, QIU H B, et al.Bi24O31Br10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride[J]. Applied catalysis B-environmental, 2017, 205: 615-623.
[16] YANG D R, FENG J, JIANG L L, et al.Photocatalyst interface engineering: epatially confined growth of ZnFe2O4 within graphene networks as excellent visible-light-driven photocatalysts[J]. Advanced functional materials, 2015, 25(45): 7080-7087.
[17] WANG H L, XU L J, LIU C L, et al.A novel magnetic photocatalyst Bi3O4Cl/SrFe12O19: Fabrication, characterization and its photocatalytic activity[J]. Ceramics international, 2020, 46(1): 460-467.
[18] 卢勇宏, 吴平霄, 黄俊毅, 等. 碱化辅助水热法制备高活性Cd1-xZnxS可见光催化剂[J]. 高等学校化学学报, 2015, 36(8): 1563-1569.
LU Y H, WU P X, HUANG J Y, et al.Alkaline-assisted hydrothermal fabrication of Cd1-xZnxS with enhanced visible-light photocatalytic performance[J]. Chemical journal of Chinese universities, 2015, 36(8): 1563-1569.
[19] 吴香, 徐龙君, 刘成伦. BiVO4-MnO2光催化剂的制备及性能[J]. 精细化工, 2019, 36(9): 1916-1922.
WU X, XU L J, LIU C L.Preparation and properties of BiVO4-MnO2 composite photocatalysts[J]. Fine chemicals, 2019, 36(9): 1916-1922.
[20] CHE H N, CHE G B, DONG H J, et al.Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity[J]. Applied surface science, 2018, 455: 705-716.
[21] WENG B, QI M Y, HAN C, et al.Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development and future perspective[J]. ACS catalysis, 2019, 9(5): 4642-4687.
[22] CHEN F, YANG Q, YAO F B, et al.Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions[J]. Journal of catalysis, 2017, 352: 160-170.
[23] LI H Y, HAO X Q, LIU Y, et al.ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution[J]. Journal of colloid and interface science, 2020, 572: 62-73.
[24] GAO X, JI X D, TAT T N, et al.A novel composite material with wood-based carbon quantum dots modified Bi2MoO6 hollow microspheres[J]. Vacuum, 2019, 164: 256-264.
[25] YUAN L, YANG M Q, XU Y J.Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity[J]. Nanoscale, 2014, 6(12): 6335-6345.
基金
煤矿灾害动力学与控制国家重点实验室自主研究重点项目(2011DA105287-zd201904)