针对新型可变偏心距风力机,通过数值模拟及实验测试的方法,研究偏心距离对风轮、塔筒及侧偏调节机构受力的影响。结果表明,在来流风速增大的条件下,可变偏心距风力机通过增大偏心距可减小叶片受力,风轮向右侧偏心100 mm时叶片最大应力是未偏心工况的86%;随着偏心距离的增大,塔筒在俯仰方向受力增长趋势放缓,受风轮偏转角增大的影响,塔筒在侧弯方向受力处于持续增大的状态;在向右偏心距离增大的过程中,风轮侧偏调节机构应力及应变逐渐向右侧集中,最大应力、应变始终处于中间部位,结果验证了偏心距调节方式的可行性及安全性。
Abstract
For the new variable eccentric distance wind turbine, the influence of eccentric distance on the force of wind turbine, tower barrel and side-bias regulation mechanism is studied by numerical simulation and experimental testing. The results show that under the condition of increasing the inflow wind speed, the variable eccentric distance wind turbine can reduce the blade force by increasing the eccentric distance. The maximum stress on the blade at the right eccentric distance of 100 mm is 86% of the uneccentric distance of the wind turbine. As the eccentric distance increases, the trend of force growth in the tilt direction of the tower slows down. Influenced by the increase of the angle of the wind wheel, the pressure of the tower barrel in the direction of the side bend is continuously increasing. In the process of increasing the distance to the right eccentricity, the stress and strain of the side adjustment mechanism of the wind wheel gradually concentrate to the right, and the maximum stress and strain are always in the middle area. The results verify the feasibility and safety of eccentric distance regulation methode.
关键词
风力机 /
应力 /
气动力 /
数值模拟 /
偏心距 /
载荷
Key words
wind turbines /
stress /
aerodynamics /
numerical simulation /
load /
eccentric distance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 萧占俊. 小型风力发电机组风轮侧偏调速的原理新解[C]//中国农业机械工业协会风力机械分会, 中国北京, 2013.
XIAO Z J.A new principle of speed regulation of small scale wind turbine by side-slip of wind turbine[C]//China Agricultural Machinery Industry Association Wind Machinery Branch, Beijing, China, 2013.
[2] BIKDASH M, CHEN D, HARB M.A hybrid model of a small autofurling wind turbine[J]. Journal of vibration and control, 2001, 7(1): 127-148.
[3] BOWEN A J, ZAKAY N, IVES R L.The field performance of a remote 10 kW wind turbine[J]. Renewable energy, 2003, 28(1): 13-33.
[4] 刘雄飞, 汪建文, 孙丰, 等. 微小型风力机重力调速机构侧倾角优化分析[J]. 太阳能学报, 2017, 38(7): 1929-1934.
LIU X F, WANG J W, SUN F, et al.Optimization analysis of the inclination angle of the gravity speed regulating mechanism of the wind turbine[J]. Acta energiae solaris sinica, 2017, 38(7): 1929-1934.
[5] 代元军, 陆亦工, 孙玉新, 等. 小型水平轴风力机限速控制机构设计方法的选择[J]. 机械制造, 2011, 49(12): 33-35.
DAI Y J, LU Y G, SHUN Y X, et al.Selection of the design method of the speed limit control mechanism for small horizontal shaft wind turbines[J]. Machinery, 2011, 49(12): 33-35.
[6] 孙丰, 汪建文, 刘雄飞. 重力回位型风力机限速机理的分析[J]. 太阳能学报, 2017, 38(1): 1-6.
SUN F, WANG J W, LIU X F.Analysis on the mechanism of speed limit of gravity return type wind turbine[J]. Acta energiae solaris sinica, 2017, 38(1): 1-6.
[7] 包道日娜, 刘旭江, 王帅龙, 等. 可变偏心距风力机载荷特性试验研究[J]. 太阳能学报, 2021, 42(11): 337-343.
BAO D R N, LIU X J, WANG S L, et al. Experimental study on load characteristics of variable eccentricity wind turbine[J]. Acta energiae solaris sinica, 2021, 42(11): 337-343.
[8] 包道日娜, 刘旭江, 王小雪, 等. 小型水平轴可变偏心距风力机输出特性分析[J]. 中国机械工程, 2020, 31(18): 2196-2205.
BAO D R N, LIU X J, WANG X X, et al. Analysis of output characteristics for small horizontal axis variable eccentricity wind turbines[J]. China mechanical engineering, 2020, 31(18): 2196-2205.
[9] 李常春, 包道日娜, 冯国英, 等. 小型水平轴变偏心距风力机功率调节方法研究[J]. 太阳能学报, 2018, 39(9): 2530-2535.
LI C C, BAO D R N, FENG G Y, et al. Research on power regulation method of small horizontal axis wind turbine with variable eccentricity[J]. Acta energiae solaris sinica, 2018, 39(9): 2530-2535.
[10] 包道日娜, 刘旭江, 王小雪, 等. 可变偏心距风力机功率调节方法实验验证[J]. 太阳能学报, 2020, 41(10): 323-331.
BAO D R N, LIU X J, WANG X X, et al. Experimental verification of power regulation method for variable eccentricity wind turbine[J]. Acta energiae solaris sinica, 2020, 41(10): 323-331.
[11] YANG Y, GU M, CHEN S Q, et al.New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of wind engineering and industrial aerodynamics, 2009, 97(2): 88-95.
[12] 包道日娜, 郭晓东, 李常春, 等. 收缩角对伞形风力发电机应力应变特性的影响研究[J]. 太阳能学报, 2018, 39(9): 2576-2584.
BAO D R N, GUO X D, LI C C, et al. Study on effect of shrinkage angle on stress and strain characteristics of umbrella wind turbine[J]. Acta energiae solaris sinica, 2018, 39(9): 2576-2584.
[13] 薛田威. 风力发电机组机械载荷测试及疲劳分析[D]. 沈阳: 沈阳工业大学, 2013.
XUE T W.Mechanical load testing and fatigue analysis of wind turbines[D]. Shenyang: Shenyang University of Technology, 2013.
[14] 包道日娜, 刘嘉文, 刘旭江, 等. 伞形风力机调节机构关键零部件可靠性分析[J]. 太阳能学报, 2021, 42(10): 298-304.
BAO D R N, LIU J W, LIU X J, et al. Reliability analysis of key components of adjustment mechanism of umbrella wind turbine[J]. Acta energiae solaris sinica, 2021, 42(10): 298-304.
基金
内蒙古自治区自然科学基金(2020MS05032)