钴铝双金属氧化物的制备及其储锂性能的研究

王俊杰, 沈宣佐, 王含, 李京浩, 李晓蒙, 杨林

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 53-59.

PDF(2370 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2370 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 53-59. DOI: 10.19912/j.0254-0096.tynxb.2020-0915

钴铝双金属氧化物的制备及其储锂性能的研究

  • 王俊杰1, 沈宣佐2, 王含2, 李京浩2, 李晓蒙2, 杨林2
作者信息 +

SYNTHESIS OF COBALT-ALUMIUM BIMETALLIC OXIDE AND THEIR LITHIUM SOTRAGE PERFORMANCE

  • Wang Junjie1, Shen Xuanzuo2, Wang Han2, Li Jinghao2, Li Xiaomeng2, Yang Lin2
Author information +
文章历史 +

摘要

以水滑石为前驱体,采用微波辅助合成法,制备复合水滑石前驱体材料(CoAl-LDHs),该前驱体是由超薄纳米片组成。经焙烧处理后,得到多孔纳米花球状Co3O4/Al2O3复合材料。研究结果表明,电极在0.2 A/g的电流密度下,经过100次循环之后仍能表现较好的稳定性且倍率性能良好,在为光伏电站配置锂离子电池储能系统的材料选择上提供可能。

Abstract

Using hydrotalcite as the precursor, the composite hydrotalcite precursor material (CoAl-LDHs) was prepared by microwave-assisted synthesis. The precursor was composed of ultra-thin nanosheets. The porous nano-flower spherical Co3O4/Al2O3 composite was obtained by calcining. The results show that the electrode can still perform well in stability and multiplier performance after 100 cycles at the current density of 0.2 A/g, which makes it possible to select materials for the configuration of lithium ion battery energy storage system for photovoltaic power stations.

关键词

锂离子电池 / 负极材料 / 复合金属氧化物 / 水滑石

Key words

lithium-ion batteries / anode material / composite transition metal oxides / layered double hydroxides

引用本文

导出引用
王俊杰, 沈宣佐, 王含, 李京浩, 李晓蒙, 杨林. 钴铝双金属氧化物的制备及其储锂性能的研究[J]. 太阳能学报. 2022, 43(5): 53-59 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0915
Wang Junjie, Shen Xuanzuo, Wang Han, Li Jinghao, Li Xiaomeng, Yang Lin. SYNTHESIS OF COBALT-ALUMIUM BIMETALLIC OXIDE AND THEIR LITHIUM SOTRAGE PERFORMANCE[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 53-59 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0915
中图分类号: TM912.9   

参考文献

[1] 黄福闯, 张洪信, 霍炜, 等. 软碳负极材料锂电池在储能电站应用研究[J]. 电源学报, 2020, 18(3): 184-190.
HUANG C F, ZHANG H X, HUO W, et al.Research on applications of soft carbon anode material lithium battery in energy storage power station[J]. Journal of power supply, 2020, 18(3): 184-190.
[2] PRABAKAR S R, BABU R S, OH M, et al.Dense CoO/graphene stacks via self-assembly for improved reversibility as high performance anode in lithium ion batteries[J]. Journal of power sources, 2014, 272: 1037-1045.
[3] CHEN G, LIAW S S, LI B, et al.Microwave-assisted synthesis of hybrid CoxNi1-x(OH)2 nanosheets: tuning the composition for high performance supercapacitor[J]. Journal of power sources, 2014, 251: 338-343.
[4] JIANG J, LIU J P, HUANG X T, et al.General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates[J]. Crystal growth & design, 2009, 10(1): 70-75.
[5] DU D J, YUE W B, RRN Y, et al.Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries[J]. Journal of materials science, 2014, 49(23): 8031-8039.
[6] XIONG S, CHEN J S, LOU X W, et al.Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties[J]. Advanced function material, 2012, 22(4): 861-871.
[7] LIANG Z, HUO R, YIN Y X, et al.Carbon-supported Ni@NiO/Al2O3 integrated nanocomposite derived from layered double hydroxide precursor as cycling-stable anode materials for lithium-ion batteries[J]. Electrochimica acta, 2013, 108: 429-434
[8] TABASSUM H, ZOU R, MAHMOOD A, et al.A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes[J]. Advance material, 2018, 30(8): 1705441.
[9] WU Z S, REN W, WEN L, et al.Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194.
[10] 李文俊, 张臻, 杨萌, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.
LI W J, ZHANG Z, YANG M, et al.Development of strategies for high-energy-density lithium batteries[J]. Energy storage science and technology, 2020, 9(2): 448-478.
[11] WU H B, CHEN J S, HNG H H, et al.Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
[12] MA Y C, HUANG Y D, WANG X C, et al.One-pot synthesis of Fe3O4/C nanocomposites by PEG-assisted co-precipitation as anode materials for high-rate lithium-ion batteries[J]. Journal of nanoparticle research, 2014, 16(10): 2614.

基金

铁铬液流电池用高选择性离子交换膜的制备与性能检测(Z191100004619008)

PDF(2370 KB)

Accesses

Citation

Detail

段落导航
相关文章

/