利用Aspen Plus 软件建立干桦木屑在下吸式固定床气化炉中的气化模型,模拟值与文献实验值吻合良好。利用Aspen Plus的灵敏度分析模块模拟分别以水蒸气(H2O)和二氧化碳(CO2)为气化剂时气化剂/生物质碳比(GC值)对气化结果的影响,并结合H2O、CO2各自的特点研究其复合气化。结果表明,H2O气化时可获得富氢煤气,但其净CO2排放量较高;CO2气化时碳转化率及冷煤气效率较低,但净CO2排放量较低;H2O、CO2复合气化使碳转化率及冷煤气效率略有降低,但可有效减少气化系统中的净CO2排放量。
Abstract
The gasification model of dry birch sawdust in downdraft fixed bed gasifier is established by Aspen Plus software, and the simulation results are in good agreement with the literature values. The sensitivity analysis module of Aspen Plus is used to simulate the effect of gasifier/biomass carbon ratio (GC value) on gasification results when steam (H2O) and carbon dioxide (CO2) are used as the gasification agent, and the co-gasification of H2O and CO2 is studied in combination with their characteristics. The results show that hydrogen rich gas can be obtained during H2O gasification, but the net CO2 emission is higher. Carbon conversion and cold gas efficiency are lower during CO2 gasification, but net CO2 emission is lower. The co-gasification of H2O and CO2 reduces the carbon conversion and cold gas efficiency slightly, but it effectively reduces the net CO2 emission in the gasification system.
关键词
生物质能 /
灵敏度分析 /
气化 /
下吸式固定床 /
净CO2排放量
Key words
biomass energy /
sensitivity analysis /
gasification /
downdraft fixed bed /
net CO2 emission
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] RAQUEL T A, ELISEU M B C, FOUZI T D, et al. Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus[J]. Renewable energy, 2020, 146: 1309-1314.
[2] PALA L P R, WANG Q, KOLB G, et al. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: an Aspen Plus model[J]. Renewable energy, 2017, 101: 484-492.
[3] HAN J, LIANG Y, HU J, et al.Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus[J]. Energy conversion and management, 2017, 153: 641-648.
[4] DOHERTY W, REYNOLDS A, KENNEDY D.The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation[J]. Biomass & bioenergy, 2009, 33(9): 1158-1167.
[5] 赵向富. 生物质流化床气化实验研究与模拟[D]. 武汉:华中科技大学, 2006.
ZHAO X F.Experimental Study and modeling of biomass gasification in fluidized bed[D]. Wuhan: Huazhong University of Science & Technology, 2006.
[6] 苏德仁, 周肇秋, 谢建军, 等. 生物质流化床富氧-水蒸气气化制备合成气研究[J]. 农业机械学报, 2011, 42(3): 100-104.
SU D R, ZHOU Z Q, XIE J J, et al.Biomass oxygen enriched-steam gasification in an atmospheric fluidized bed for syngas production[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(3): 100-104.
[7] GAGLIANO A, NOCERA F, BRUNO M, et al.Development of an equilibrium-based model of gasification of biomass by Aspen Plus[J]. Energy procedia, 2017, 111: 1010-1019.
[8] 郑志行, 李谦, 张家元, 等. 基于Aspen Plus的Shell气流床工业气化炉模拟[J]. 化工进展, 2021, 40(4): 2152-2160.
ZHENG Z H, LI Q, ZHANG J Y, et al.Simulation of industrial Shell entrained flow bed by Aspen Plus[J]. Chemical industry and engineering progress, 2021, 40(4): 2152-2160.
[9] 安金卉. 生物质气化过程模拟研究[D]. 郑州: 郑州大学, 2012.
AN J H.Simulation study of biomass gasification[D]. Zhengzhou: Zhengzhou University, 2012.
[10] ADNAN M A, HOSSAIN M M.Gasification performance of various microalgae biomass—a thermodynamic study by considering tar formation using Aspen Plus[J]. Energy conversion and management, 2018, 165: 783-793.
[11] 梁奎. 上吸式生物质空气气化及焦油低减技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
LIANG K.Study of updraft biomass air gasification and tar-reducing technology[D]. Harbin: Harbin Institute of Technology, 2008.
[12] RUPESH S, MURALEEDHARAN C, ARUN P.Aspen Plus modelling of air-steam gasification of biomass with sorbent enabled CO2 capture[J]. Resource efficient technologies, 2016, 2(2): 94-103.