基于柔性负荷的孤立多能互补建筑能源系统优化设计

刘艳峰, 刘正学, 罗西, 胡亮, 王亚星

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 24-32.

PDF(1840 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1840 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 24-32. DOI: 10.19912/j.0254-0096.tynxb.2020-0926

基于柔性负荷的孤立多能互补建筑能源系统优化设计

  • 刘艳峰1,2, 刘正学1,2, 罗西1,2, 胡亮1,2, 王亚星1,2
作者信息 +

DESIGN OF ISOLATED MULTI-ENERGY COMPLEMENTARY BUILDING ENERGY SYSTEM BASED ON FLEXIBLE LOAD

  • Liu Yanfeng1,2, Liu Zhengxue1,2, Luo Xi1,2, Hu Liang1,2, Wang Yaxing1,2
Author information +
文章历史 +

摘要

构建基于柔性负荷的多能互补建筑能源系统是解决孤立乡村能源供给问题的有效手段。采用Matlab/Simulink建立孤立多能互补建筑能源系统优化模型,并以系统的费用年值最低为优化目标,基于遗传算法求解计算。研究结果表明,与不考虑柔性负荷相比,柔性电负荷、柔性热负荷、柔性电/热负荷参与调节时,系统的费用年值分别降低了5.24%、33.11%与35.50%。柔性电负荷参与调节后,负荷向光伏出力时段平移,储能电池和柴油发电机的容量得以降低。与仅有柔性热负荷参与调节相比,柔性电、热负荷同时参与调节时,室内温度波动平缓,波动振幅小。

Abstract

Multi-energy complementary building energy systems based on flexible load can address the issue of energy supply in isolated rural areas. In this study, the optimization model of isolated multi-energy complementary building energy system is established in Matlab/Simulink. Taking the minimum annual cost of the system as the optimization objective, the genetic algorithm is used to solve the problem. The results show that the annual system cost can be saved by 5.24%,33.11%, and 35.50% respectively when the flexible electric load, the flexible thermal load, and the flexible electrical/thermal load participate in the regulation. After the flexible electrical load participates in the djustrnent, the load shifts to the photovoltaic output period, and the capacity of the energy storage battery and diesel generator is reduced. Compared with the flexible thermal load, the indoor temperature fluctuates more gently when the flexible electrical and thermal load simultaneously participate in the regulation.

关键词

多能互补 / 柔性负荷 / 优化设计 / 孤立建筑能源系统 / 遗传算法

Key words

multi-energy complement / flexible load / optimal design / isolated building energy system / genetic algorithm

引用本文

导出引用
刘艳峰, 刘正学, 罗西, 胡亮, 王亚星. 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报. 2022, 43(6): 24-32 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0926
Liu Yanfeng, Liu Zhengxue, Luo Xi, Hu Liang, Wang Yaxing. DESIGN OF ISOLATED MULTI-ENERGY COMPLEMENTARY BUILDING ENERGY SYSTEM BASED ON FLEXIBLE LOAD[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 24-32 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0926
中图分类号: TK01   

参考文献

[1] 孙建军, 张世泽, 曾梦迪, 等. 考虑分时电价的主动配电网柔性负荷多目标优化控制[J]. 电工技术学报, 2018, 33(2): 401-412.
SUN J J, ZHANG S Z, ZENG M D, et al.Multi-objective optimal control for flexible load in active distribution network considering time-of-use tariff[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 401-412.
[2] LI J H, ZHU M S, LIANG J J.Pattern simulation and analysis of generalized load profile coupling with active load and renewable energy power[J]. International journal of electrical power & energy systems, 2020, 117: 105611.
[3] 黄焘, 马溪原, 雷金勇, 等. 考虑分时电价和需求响应的家庭型用户侧微电网优化运行[J]. 南方电网技术, 2015, 9(4): 47-53.
HUANG T, MA X Y, LEI J Y, et al.Optimal operation of household user-side microgrid considering time-of-use price and demand response[J]. Southern power system technology, 2015, 9(4): 47-53.
[4] 王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 36-43.
WANG C S, LIU M X, LU N.A tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Proceedings of the CSEE, 2012, 32(25): 36-43.
[5] ALIPOUR M, ZARE K, ABAPOUR M.MINLP probabilistic scheduling model for demand response programs integrated energy hubs[J]. Institute of electrical and electronics engineers transactions on industrial informatics, 2018, 14(1): 79-88.
[6] 刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850.
LIU R H, LI Z L, YANG X, et al.Optimal dispatch of community integrated energy system considering user-side flexible load[J]. Acta energiae solaris sinica, 2019, 40(10): 2842-2850.
[7] CHAMANDOUST H, DERAKHSHAN G, HAKIMI S M.Tri-objective optimal scheduling of smart energy hub system with schedulable loads[J]. Journal of cleaner production, 2019, 236: 117584.
[8] 赵波, 包侃侃, 徐志成, 等. 考虑需求侧响应的光储并网型微电网优化配置[J]. 中国电机工程学报, 2015, 35(21): 5465-5474.
ZHAO B, BAO K K, XU Z C, et al.Optimal sizing for grid-connected photovoltaic-and-storage microgrid considering demand response[J]. Proceedings of the CSEE, 2015, 35(21): 5465-5474.
[9] 张丹丹, 童亦斌, 金新民, 等. 计及需求响应的微电网储能优化配置[J]. 电力电子技术, 2016, 50(11): 107-109.
ZHANG D D, TONG Y B, JIN X M, et al.Optimal allocation of energy storage in micro-grid considering demand response[J]. Power electronics, 2016, 50(11): 107-109.
[10] MEINRENKEN C J, MEHMANI A.Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs[J]. Applied energy, 2019, 254: 113630.
[11] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. 4th Ed. Hoboken: John Wiley & Sons, Inc Press, 2013: 379-384.
[12] 张恒. 香格里拉地区户用太阳能与热泵联合供热系统性能研究[D]. 昆明: 云南师范大学, 2016.
ZHANG H.Study on the performance of solar energy and heat pump combined heating system in Shangri-la area[D]. Kunming: Yunnan Normal University, 2016.
[13] 王伟, 吴旭, 孙育英, 等. 不同除霜周期对空气源热泵运行性能影响的实测研究[J]. 暖通空调, 2018, 48(6): 1-7.
WANG W, WU X, SUN Y Y, et al.Influence of different defrosting cycles on operating performance of air-source heat pump[J]. Heating ventilating & air conditioning, 2018, 48(6): 1-7.
[14] 胡蘭丹, 刘东, 闫丽霞, 等. 考虑需求响应的CCHP多能互补优化策略[J]. 南方电网技术, 2016, 10(12): 75-81.
HU L D, LIU D, YAN L X, et al.Optimal multi-energy complementary strategy for CCHP considering demand response[J]. Southern power system technology, 2016, 10(12): 75-81.
[15] 郁磊. MATLAB智能算法30个案例分析[M]. 第2版. 北京: 北京航空航天大学出版社, 2015: 137-143.
YU L.MATLAB intelligent algorithm 30 analysis[M]. 2nd Ed. Beijing: Beijing University Press, 2015: 137-143.
[16] SHARAFI M, ELMEKKAWY T Y.Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach[J]. Renewable energy, 2014, 68: 67-79.

基金

国家自然科学基金青年项目(52008328); 陕西省重点研发项目(2018ZDCXL-SF-03-01)

PDF(1840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/