砂土导热特性及表观热导率预测关联式模型

褚召祥, 王义江, 赵光思, 董凯军, 孙钦, 王泽桂

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 1-9.

PDF(2825 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2825 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2020-0932

砂土导热特性及表观热导率预测关联式模型

  • 褚召祥, 王义江2, 赵光思2, 董凯军1, 孙钦1, 王泽桂2
作者信息 +

HEAT CONDUCTION CHARACTERISTICS OF SANDS AND APPARENT THERMAL CONDUCTIVITY PREDICTIVE CORRELATION MODEL

  • Chu Zhaoxiang, Wang Yijiang2, Zhao Guangsi2, Dong Kaijun1, Sun Qin1, Wang Zegui2
Author information +
文章历史 +

摘要

以细观尺度假设条件下砂土多孔/颗粒介质周期性单元结构为几何模型,采用COMSOL Multiphysics软件开展针对不同孔隙率和饱和度、不同边界条件下,固-液-气三相砂土稳态热传导过程有限元数值实验。研究结果表明,砂土热导率随孔隙率的增加而降低,随饱和度的增加而增加,变化速率均逐渐减小;相同孔隙率和饱和度工况下方形单元结构采用恒壁温+绝热+第3类边界条件的组合方式时,热导率反向计算结果最优;基于数值实验结果建立的砂土热导率与孔隙率、饱和度之间的指数、幂律函数关系式计算获得的热导率在低、高饱和度区与实验回归模型预测结果吻合度较高;与理论和试验研究相比,数值模拟/实验可以有效表征孔隙/颗粒尺度砂土导热特性,进而以土壤物理参数为基础建立具有较高精度的砂土表观热导率预测关联式模型。

Abstract

The steady state heat conduction processes of multi-phase (solid-liquid-gas) and porous/granular sandy soil were simulated via finite element method (COMSOL Multiphysics) in a periodic unit cell under ideal assumptions, based on which the heat conduction characteristics and change laws of its effective thermal conductivity (ETC) were obtained. The results indicate that the ETC of the unit cell decreases with the porosity while increases with the saturation, and the decrease and increase tendencies, however, slow down gradually, showing good agreements with existing theoretical and experimental studies. The adversely calculated ETC using the simulated results under the combination of boundary conditions of constant wall temperature + adiabatic boundary + the third Robin boundary condition has the best performance. Based on the numerical experiment results, the established exponent/power-law function between the ETC of sand and porosity, saturation provides higher coincidence degree with experimental regression model in low and high saturation region. Compared with theoretical and experimental research, the numerical simulation/experiment can effectively capture the microscopic heat conduction characteristics of sands and establish the ETC predictive correlation model using basic soil physical parameters with acceptable accuracy.

关键词

浅层地热能 / 砂土 / 多孔介质 / 孔隙率 / 饱和度 / 热导率 / 数值模拟

Key words

shallow geothermal energy / sand / porous media / porosity / saturation / thermal conductivity / numerical simulation

引用本文

导出引用
褚召祥, 王义江, 赵光思, 董凯军, 孙钦, 王泽桂. 砂土导热特性及表观热导率预测关联式模型[J]. 太阳能学报. 2022, 43(5): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0932
Chu Zhaoxiang, Wang Yijiang, Zhao Guangsi, Dong Kaijun, Sun Qin, Wang Zegui. HEAT CONDUCTION CHARACTERISTICS OF SANDS AND APPARENT THERMAL CONDUCTIVITY PREDICTIVE CORRELATION MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0932
中图分类号: TK513.5   

参考文献

[1] JIA G S, TAO Z Y, MENG X Z, et al.Review of effective thermal conductivity models of rock-soil for geothermal energy applications[J]. Geothermics, 2019, 77: 1-11.
[2] 高青, 余传辉, 马纯强, 等. 地下土壤导热系数确定中影响因素分析[J]. 太阳能学报, 2008, 29(5): 581-585.
GAO Q, YU C H, MA C Q, et al.Analysis of influence factors on determining the ground thermal conductivity[J]. Acta energiae solaris sinica, 2008, 29(5): 581-585.
[3] 王鹏宇, 王志良, 申林方, 等. 基于格子Boltzmann方法的非饱和土体导热系数研究[J]. 太阳能学报, 2020, 41(4): 287-295.
WANG P Y, WANG Z L, SHEN L F, et al.Research on thermal conductivity of unsaturated soil based on lattice Boltzmann method[J]. Acta energiae solaris sinica, 2020, 41(4): 287-295.
[4] 褚召祥, 周国庆, 饶中浩, 等. 颗粒岩土介质热导率预测关联式及其演化机制[J]. 岩石力学与工程学报, 2020, 39(2): 384-397.
CHU Z X, ZHOU G Q, RAO Z H, et al.Predicting correlation and evolution mechanisms of the effective thermal conductivity of granular geomaterials[J]. Chinese journal of rock mechanics and engineering, 2020, 39(2): 384-397.
[5] ZHANG N, WANG Z Y.Review of soil thermal conductivity and predictive models[J]. International journal of thermal sciences, 2017, 117: 172-183.
[6] HAIGH S K.Thermal conductivity of sands[J]. Geotechnique, 2012, 62(7): 1-9.
[7] ALBERT K, SCHULZE M, FRANZ C, et al.Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity[J]. Geothermics, 2017, 66: 1-12.
[8] 李守巨, 范永思, 张德岗, 等. 岩土材料导热系数与孔隙率关系的数值模拟分析[J]. 岩土力学, 2007, 28(S1): 244-248.
LI S J, FAN Y S, ZHANG D G, et al.Numerical simulation of relationship between thermal conductivity of geotechnical material and its porosity[J]. Rock and soil mechanics, 2007, 28(S1): 244-248.
[9] 褚廷湘, 李品, 余明高. 水分相变下松散煤体导热系数的数值模拟研究[J]. 煤炭学报, 2017, 42(7): 1782-1789.
CHU T X, LI P, YU M G.Simulation study of water phase transition effects on thermal conductivity of loose coal[J]. Journal of China Coal Society, 2017, 42(7): 1782-1789.
[10] 胡雪蛟, 杜建华, 王补宣. 液相饱和度对多孔介质稳态导热系数的影响[J]. 工程热物理学报, 2001, 22(S1), 125-128.
HU X J, DU J H, WANG B X.The influence of liquid saturation on the etagant thermal conductivity of porous media[J]. Journal of engineering thermophysics, 2001, 22(S1): 125-128.
[11] HU X J, DU J H, LEI S Y, et al.A model for the thermal conductivity of unconsolidated porous media based on capillary pressure-saturation relation[J]. International journal of heat and mass transfer, 2001, 44(1): 247-251.
[12] 王义江. 深部热环境围岩及风流传热传质研究[D]. 徐州: 中国矿业大学, 2010.
WANG Y J.Heat and mass transfer of surrounding rock and airflow for deep thermal environment[D]. Xuzhou: China University of Mining and Technology, 2010.
[13] 冯俞楷, 杜小泽, 杨立军. 非稳态导热基于温度梯度的本征正交分解降维方法[J]. 中国科学(技术科学), 2018, 48(1): 39-47.
FENG Y K, DU X Z, YANG L J.Extrapolating POD reduced-order model based on temperature gradient for unsteady heat conduction[J]. Scientia sinica(technologica), 2018, 48(1): 39-47.
[14] HSU C T, CHENG P, WONG K W.A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. Journal of heat transfer, 1995, 117: 264-269.
[15] CHENG P, HSU C T.The effective stagnant thermal conductivity of porous media with periodic structures[J]. Journal of porous media, 1999, 2(1): 19-38.
[16] 褚召祥. 多组分-多孔岩土介质导热系数预测理论模型研究[D]. 徐州: 中国矿业大学, 2019.
CHU Z X.Thermal conductivity prediction theoretical models for composite-porous geomaterials[D]. Xuzhou: China University of Mining And Technology, 2019.
[17] EWING R P, HORTON R.Thermal conductivity of a cubic lattice of spheres with capillary bridges[J]. Journal of physics D: Applied physics, 2007, 40(16): 4959-4965.
[18] YUN T S, SANTAMARINA J C.Fundamental study of thermal conduction in dry soils[J]. Granular matter, 2007, 10(3): 197-207.
[19] DONG Y, MCCARTNEY J S, LU N.Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and geological engineering, 2015, 33(2): 207-221.
[20] 陈善雄, 陈守义. 砂土热导率的实验研究[J]. 岩土工程学报, 1994, 16(5): 47-53.
CHEN S X, CHEN S Y.Experimental study on thermal conductivity of sand[J]. Chinese journal of geotechnical engineering, 1994, 16(5): 47-53.
[21] CHEN S X.Thermal conductivity of sands[J]. Heat and mass transfer, 2008, 44(10): 1241-1246.
[22] 刘玉旺. 含湿多孔介质导热系数测量准确性实验研究及机理分析[D]. 济南: 山东建筑大学, 2010.
LIU Y W.Experimental study and mechanism analysis of thermal conductivity measurement accuracy of wet porous media[D]. Ji’nan: Shandong Jianzhu University, 2010.

基金

国家自然科学基金(42107156; 41672343; 51978653); 广东省新能源和可再生能源研究开发与应用重点实验室开放基金(E039kf0501)

PDF(2825 KB)

Accesses

Citation

Detail

段落导航
相关文章

/