吸气控制策略对垂直轴风力机气动性能影响研究

罗帅, 缪维跑, 刘青松, 李春, 张万福

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 287-295.

PDF(3207 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3207 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 287-295. DOI: 10.19912/j.0254-0096.tynxb.2020-0946

吸气控制策略对垂直轴风力机气动性能影响研究

  • 罗帅1, 缪维跑1,2, 刘青松1, 李春1,2, 张万福2
作者信息 +

STUDY ON INFLUENCE OF SUCTION CONTROL STRATEGY ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE

  • Luo Shuai1, Miao Weipao1,2, Liu Qingsong1, Li Chun1,2, Zhang Wanfu2
Author information +
文章历史 +

摘要

针对垂直轴风力机复杂气动特性,将吸气孔置于风力机翼型上下表面,提出不同吸气控制策略以改善其气动性能。基于CFD方法,研究不同叶尖速比下吸气策略对风力机风能利用率、叶片切向力系数及流场特性的影响,综合考虑能量消耗与风力机输出功率。结果表明:提出的3种控制策略在低叶尖速比下均能大幅提升整机气动效率。效果最佳的迎、背风区交替吸气策略可显著推迟分离点,延缓翼型动态失速发生,并减少分离涡周期性脱落造成的损失。此外,该策略对动态尾迹效应有良好的控制效果,同时降低整机转矩波动幅值,消除中低叶尖速比下风轮负转矩,从而提高获能效率且延长风力机使用寿命。

Abstract

Aiming at the complex aerodynamic characteristics of vertical axis wind turbine, the air intake holes are placed on the upper and lower surfaces of the wind wing type, and different control strategies for air intake are proposed to improve its aerodynamic performance. Based on CFD method, the influences of suction strategies with different tip speed ratios on wind energy utilization rate, blade tangential force coefficient and flow field characteristics of wind turbines were studied, and energy consumption and wind turbine output power were comprehensively considered. The results show that the three control strategies can greatly improve the aerodynamic efficiency of the whole machine at low tip ratio. The optimal approach of alternating suction in the windward and leeward zones can significantly delay the separation point, delay the occurrence of dynamic stall of airfoil, and reduce the loss caused by periodic shedding of separation vortex. In addition, the strategy has a good control effect on the dynamic wake effect, reduces the torque fluctuation amplitude of the whole machine, eliminates the negative torque of the wind turbine under medium and low tip ratio, thus improving the energy efficiency and prolonging the service life of the wind turbine.

关键词

垂直轴风力机 / 流动控制 / 计算流体力学 / 气动特性 / 吸气策略

Key words

VAWTs / flow control / CFD / aerodynamic characteristics / suction strategy

引用本文

导出引用
罗帅, 缪维跑, 刘青松, 李春, 张万福. 吸气控制策略对垂直轴风力机气动性能影响研究[J]. 太阳能学报. 2022, 43(5): 287-295 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0946
Luo Shuai, Miao Weipao, Liu Qingsong, Li Chun, Zhang Wanfu. STUDY ON INFLUENCE OF SUCTION CONTROL STRATEGY ON AERODYNAMIC PERFORMANCE OF VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 287-295 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0946
中图分类号: TK83   

参考文献

[1] EGLI F, STEFFEN B, SCHMIDT T.Learning in the financial sector is essential for reducing renewable energy costs[J]. Nature energy, 2019, 4: 835-846.
[2] LI L Y, REN X Q, YANG Y L, et al.Analysis and recommendations for onshore wind power policies in China[J]. Renewable and sustainable energy reviews, 2018, 82(1): 156-167.
[3] SUN X, ZHANG L, HUANG D, et al.Understanding the performance of an oscillating-wing wind power generator over a wide range of operating parameters[J]. International journal of energy research, 2018, 42(2): 776-789.
[4] MIAO W P, LI C, PAVESI G, et al.Investigation of wake characteristics of a yawed HAWT and its impacts on the inline downstream wind turbine using unsteady CFD[J]. Journal of wind engineering and industrial aerodynamics, 2017, 168: 60-71.
[5] 李春, 叶舟, 高伟, 等. 现代陆海风力机计算与仿真[M]. 上海: 上海科学技术出版社, 2012.
LI C, YE Z, GAO W, et al.Computation and Simulation of modern land-sea wind turbine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.
[6] FRANCHINA N, PERSICO G, SAVINI M.2D-3D computations of a vertical axis wind turbine flow field: modeling issues and physical interpretations[J]. Renewable energy, 2018, 136: 1170-1189.
[7] TJIU W, MARNOTO T, MAT S, et al.Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development[J]. Renewable energy, 2015, 75: 560-571.
[8] LIU Q S, MIAO W P, LI C, et al.Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT[J]. Energy, 2019, 189: 116-138.
[9] ZHU H T, HAO W X, LI C, et al.Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines[J]. Aerospace science and technology, 2019, 88: 468-480.
[10] NIR M, AVRAHAM S.Fluidic flow control applied for improved performance of Darrieus wind turbines[J]. Wind energy, 2015, 19(9): 1585-1602.
[11] YANG Y, LI C, ZHANG W F, et al.Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil[J]. Journal of mechanical science & technology, 2017, 31(4): 1645-1655.
[12] ZHANG W L.Boundary layer suction on a horizontal axis wind turbine: an aerodynamic design of a thick airfoil for application[D]. Delft: Delft University of Technology, 2009.
[13] GHEDIN F.Structural design of a 5 MW wind turbine blade equipped with boundary layer suction technology: analysis and lay-up optimisation applying a promising technology[D]. Delft: Delft University of Technology, 2010.
[14] WOLF A, LUTZ T, WÜRZ W, et al. Trailing edge noise reduction of wind turbine blades by active flow control[J]. Wind energy, 2014, 18(5): 909-923.
[15] REDHA W, DAVID B.Suction effects on the transition and reattachment of a transitional bubble[J]. AIAA aerospace sciences, 2013, 83: 1-16.
[16] LEI J M, LIU Q Y, LI T.Suction control of laminar separation bubble over an airfoil at low Reynolds number[J]. Journal of aerospace engineering, 2017, 76: 1-10.
[17] PACKARD N, THAKE M, BONILLA C H, et al.Active control of flow separation on a laminar airfoil[J]. AIAA journal, 2008, 51: 1032-1041.
[18] WANG Z J, GURSUL I.Lift enhancement of a flat-plate airfoil by steady suction[J]. AIAA journal, 2017, 65: 1355-1372.
[19] 张志勇, 王团团, 陈志华, 等. 低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J]. 空气动力学学报, 2020, 38(1): 58-65.
ZHANG Z Y, WANG T T, CHEN Z H, et al.The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds[J]. Acta aerodynamica sinica, 2020, 38(1): 58-65.
[20] 张玲, 唐晨, 任利亚. 定常吸气对风力机叶片气动性能影响的研究[J]. 太阳能学报, 2017, 38(1): 7-15.
ZHANG L, TANG C, REN L Y.Research on the influence of steady suction air to aerodynamic performances[J]. Acta energiae solaris sinica, 2017, 38(1): 7-15.
[21] REZAEIHA A, MONTAZERI H, BLOCKEN B.Active flow control for power enhancement of vertical axis wind turbines: leading-edge slot suction[J]. Energy, 2019, 189: 116-131.
[22] Mohamed M H.Performance investigation of H-rotor Darrieus turbine with new airfoil shapes[J]. Energy, 2012, 47(1): 522-530.
[23] CASTELLI M R, ARDIZZON G, BATTISTI L, et al.Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and exposition, Vancouver, British Columbia, Canada, 2010: 409-418.
[24] 朱海天, 郝文星, 李春, 等. 风向对建筑增强型垂直轴风力机气动性能的影响[J]. 动力工程学报, 2018, 38(6): 493-500, 512.
ZHU H T, HAO W X, LI C, et al.Effects of wind direction on aerodynamic performance of building augmented vertical axis wind turbine[J]. Journal of Chinese Society of Power Engineering, 2018, 38(6): 493-500, 512.
[25] 朱海天, 郝文星, 李春, 等. 叶片实度对建筑增强型垂直轴风力机气动性能的影响[J]. 热能动力工程, 2018, 33(7): 114-121.
ZHU H T, HAO W X, LI C, et al.Impact of solidity on aerodynamic performance of building augmented vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2018, 33(7): 114-121.
[26] DE GIORGI M G, DE LUCA C G, FICARELLA A, et al. Comparison between synthetic jets and continuous jets for active flow control: application on a NACA 0015 and a compressor stator cascade[J]. Aerospace science and technology, 2015, 43: 256-280.
[27] STALNOV O, KRIBUS A, SEIFERT A.Evaluation of active flow control applied to wind turbine blade section[J]. Journal of renewable & sustainable energy, 2010, 2(6): 101-125.
[28] REZAEIHA A, MONTAZERI H, BLOCKEN B, et al.Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters[J]. Energy conversion and management, 2018, 169: 45-77.
[29] 赵振宙, 曾冠毓, 王同光, 等. 基于转捩模型Phase VI风力机气动特性数值计算[J]. 中国电机工程学报, 2017, 37(16): 4739-4746, 4899.
ZHAO Z Z, ZENG G Y, WANG T G, et al.Numerical simulation of aerodynamic characteristic of phase VI wind turbine based on transition mode[J]. Proceedings of the CSEE, 2017, 37(16): 4739-4746, 4899.
[30] ZHU H T, HAO W X, LI C, et al.Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap[J]. Journal of wind engineering and industrial aerodynamics, 2019, 186: 17-31.
[31] BALDUZZI F, BIANCHINI A, MALECI R, et al.Critical issues in the CFD simulation of Darrieus wind turbines[J]. Renewable energy, 2016, 85: 419-435.

基金

国家自然科学基金(51976131; 51676131); 上海“科技创新行动计划”地方院校能力建设项目(19060502200)

PDF(3207 KB)

Accesses

Citation

Detail

段落导航
相关文章

/