碳基固体酸预处理结合酶解糖化玉米芯的研究

卢思, 王琼, 梁翠谊, 亓伟, 袁振宏, 蓝平

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 372-376.

PDF(1602 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1602 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 372-376. DOI: 10.19912/j.0254-0096.tynxb.2020-0973

碳基固体酸预处理结合酶解糖化玉米芯的研究

  • 卢思1, 王琼1, 梁翠谊1, 亓伟1, 袁振宏1, 蓝平2
作者信息 +

SACCHARIFICATION OF CORNCOB BY CARBON-BASED SOLID ACID PRETREATMENT AND SUBSEQUENT ENZYMATIC HYDROLYSIS

  • Lu Si1, Wang Qiong1, Liang Cuiyi1, Qi Wei1, Yuan Zhenhong1, Lan Ping2
Author information +
文章历史 +

摘要

以自合成的木质素磺酸钠基固体酸(Sl-C-S-H2O2)为催化剂,并耦合纤维素酶实现玉米芯的两步水解建立糖平台。考察预处理条件对木糖收率的影响,最高木糖收率可达83.4%;在国产纤维素酶的作用下,48 h葡萄糖收率即可达92.6%,两步反应的总还原糖收率达88.1%。

Abstract

In this work, the hydrolysis of corncob was combined with pretreatment by self-synthesized carbon-based solid acid catalyst and subsequent enzymatic hydrolysis of treated residue by cellulase. Through the optimization of the pretreatment reaction condition, the highest xylose yield of 83.4% was obtained. Then, the treated residue was enzymatic hydrolysis by domestic cellulose with the glucose yield of 92.6% was obtained at 48 h and the total yield of reducing sugar up to 88.1% was obtained within these two-step hydrolysis process.

关键词

生物质 / 糖化 / 酶解 / 碳基固体酸 / 预处理

Key words

biomass / saccharification / enzymatic hydrolysis / carbon-based solid acid / pretreatment

引用本文

导出引用
卢思, 王琼, 梁翠谊, 亓伟, 袁振宏, 蓝平. 碳基固体酸预处理结合酶解糖化玉米芯的研究[J]. 太阳能学报. 2022, 43(5): 372-376 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0973
Lu Si, Wang Qiong, Liang Cuiyi, Qi Wei, Yuan Zhenhong, Lan Ping. SACCHARIFICATION OF CORNCOB BY CARBON-BASED SOLID ACID PRETREATMENT AND SUBSEQUENT ENZYMATIC HYDROLYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 372-376 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0973
中图分类号: TK6   

参考文献

[1] CLIMENT M J, CORMA A, IBORRA S.Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green chemistry, 2014, 16(2): 516-547.
[2] DONG H L, ZHENG L M, YU P J, et al.Characterization and application of lignin-carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species[J]. ACS sustainable chemistry & engineering, 2019, 8(1): 256-266.
[3] 朱银萍, 余强, 袁振宏, 等. 微波水热处理提高玉米芯总糖收率的研究[J]. 太阳能学报, 2018, 39(7): 1924-1929.
ZHU Y P, YU Q, YUAN Z H, et al.Microwave-hydrothermal pretreatment of corncob to enhance its total sugar recovery[J]. Acta energiae solaris sinica, 2018, 39(7): 1924-1929.
[4] LIN W Q, XING S, JIN Y C, et al.Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues[J]. Bioresource technology, 2020, 306: 123163.
[5] JIN S Y, GONG J W, YANG C, et al.A recyclable and regenerable solid acid for efficient hydrolysis of cellulose to glucose[J]. Biomass and bioenergy, 2020, 138: 105611.
[6] HARA M.Biomass conversion by a solid acid catalyst[J]. Energy & environmental science, 2010, 3(5): 601-607.
[7] WANG J J, XI J X, WANG Y Q, et al.Recent advances in the catalytic production of glucose from lignocellulosic biomass[J]. Green chemistry, 2015, 17(2): 737-751.
[8] 刘婉玉, 亓伟, 周劲松, 等. 生物质碳基固体酸催化剂在纤维素水解中的研究进展[J]. 林产化学与工业, 2015, 35(1): 138-144.
LIU W Y, QI W, ZHOU J S, et al.Research progress in cellulose hydrolysis by carbonaceous solid acid[J]. Chemistry and industry of forest products, 2015, 35(1): 138-144.
[9] KONWAR L J, MKI-ARVELA P, MIKKOLA J P.SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis[J]. Chemical reviews, 2019, 119(22): 11576-11630.
[10] 刘姝娜, 张续成, 亓伟, 等. 磁性碳基固体酸催化剂的制备及其水解工艺优化研究[J]. 太阳能学报, 2020, 41(6): 119-125.
LIU S N, ZHANG X C, QI W, et al.Preparation and hydrolysis process optimization of magnetic carbon-based solid acid catalyst[J]. Acta energiae solaris sinica, 2020, 41(6): 119-125.
[11] XU Q, YANG W, LIU G F, et al.Enhanced enzymatic hydrolysis of corncob by synthesized enzyme-mimetic magnetic solid acid pretreatment in an aqueous phase[J]. ACS omega, 2019, 4(18): 17864-17873.
[12] BAI C X, ZHU L F, SHEN F, et al.Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid[J]. Bioresource technology, 2016, 220: 656-660.
[13] LI X, SHU F Y, HE C, et al.Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob[J]. RSC advances, 2018, 8(20): 10922-10929.
[14] SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[R]. NREL/TP-510-42618, 2008.
[15] LEE Y Y, PRASHANT I, TORGET R W.Dilute-acid hydrolysis of lignocellulosic biomass[J]. Advances in biochemical engineering biotechnology, 1999, 65: 93-115.
[16] 张晗, 付乾, 廖强, 等. 小麦秸秆水热预处理半纤维素降解动力学研究[J]. 化工学报, 2020, 71(7): 3098-3105.
ZHANG H, FU Q, LIAO Q, et al.Study on the degradation kinetics of hemicellulose in wheat straw hydrothermal pretreatment[J]. CIESC journal, 2020, 71(7): 3098-3105.
[17] QI W, LIU G F, HE C, et al.An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility[J]. Green chemistry, 2019, 21(6): 1292-1304.
[18] QI W, HE C, WANG Q, et al.Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis[J]. ACS sustainable chemistry & engineering, 2018, 6(3): 3640-3648.
[19] WEINGARTEN R, CHO J, CONNER W C, et al.Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green chemistry, 2010, 12(8): 1423-1429.
[20] ZHANG H D, YE G Y, WEI Y T, et al.Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant[J]. Bioresource technology, 2017, 229: 96-103.
[21] GATT E, RIGAL L, VANDENBOSSCHE V.Biomass pretreatment with reactive extrusion using enzymes: areview[J]. Industrial crops and products, 2018, 122: 329-339.

基金

国家自然科学基金(51676193; 51861145103); 广西多糖材料与改性重点实验室开放基金(GXPSMM18ZD-01)

PDF(1602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/