针对微水头低流速水域流速梯度的问题,在水轮机导流罩基础上设计一种采集装置,使水轮机能提前采集低流速水流, 用结构补偿流量, 并通过数值模拟与试验相结合的方法,研究在非均匀流中加装采集装置对水轮机水动力性能的影响。结果表明:加装采集装置可减弱流速梯度对水轮机水动力性能的影响, 在低流速时作用明显。同时加装采集装置可增大水轮机输出功率, 减小启动流速,输出功率最多增大约2.2倍,启动流速可减小约0.1 m/s。
Abstract
In order to solve the problem of velocity profile in low-velocity water area with micro-head, a collection device is designed on the basis of turbine shroud, so that the turbine can collect low velocity flow ahead of time. By combining numerical simulation and experiment, the influence of installing acquisition device on the hydrodynamic performance of the turbine in non-uniform flow is studied. The results show that the influence of velocity gradient on the hydrodynamic performance of the turbine can be reduced by installing the acquisition device. The influence of velocity profile on the hydrodynamic performance of the turbine can be reduced by installing a data acquisition device, which is obvious at low velocity. At the same time, the output power can be increased by 2.2 times and the starting flow rate can be reduced by about 0. 1 m/s.
关键词
速度梯度 /
水轮机 /
微水头 /
数值模拟 /
流体动力学
Key words
velocity gradients /
water turbines /
micro-head /
numerical simulation /
hydrodynamics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张玉全, 郑源, 孙科, 等. 微水头资源开发与发电装置研究现状及趋势[J]. 中国工程院战略研究, 2018, 20(3): 90-95.
ZHANG Y Q, ZHENG Y, SUN K, et al.Research status and trends of ultra-low-head water resources and hydro-turbines[J]. Strategic study of CAE, 2018, 20(3): 90-95.
[2] “十四五”电力规划工作启动[J]. 中国能源, 2020, 42(2): 4.
“The fourteenth five year plan” electric power planning started[J]. Energy of China, 2020, 42(2): 4.
[3] ZHOU D, GUI J, Deng Z D, et al.Development of an ultra-low head siphon hydro turbine using computational fluid dynamics[J]. Energy, 2019, 181: 43-50.
[4] 司先才, 王树杰, 袁鹏, 等. 实海况下流速梯度对潮流能水轮机水动力性能影响的数值研究[J]. 太阳能学报, 2019, 40(8): 2220-2227.
SI X C, WANG S J, YUAN P, et al.CFD study on hydrodynamic performance of horizontal axis tldal turbine in a real velocity gradient environment[J]. Acta energiae solaris sinica, 2019, 40(8): 2220-2227.
[5] 盛传明, 练继建, 林大明, 等. 海底边界效应对海流发电水轮机水动力性能影响研究[J]. 海洋工程, 2017, 35(2): 75-82.
SHENG C M, LIAN J J, LIN D M, et al.Influence of boundary effect to hydrodynamic performance of marine current turbine[J]. The ocean engineering, 2017, 35(2): 75-82.
[6] O’ROURKE F, BOYLE F, REYNOLDS A, et al. Hydrodynamic performance prediction of a tidal currentturbine operating in non-uniform inflow conditions[J]. Energy, 2015, 93(Part 2): 2483-2496.
[7] 赵明登, 槐文信, 李泰儒. 明渠均匀流垂线流速分布规律研究[J]. 武汉大学学报(工学版), 2010, 43(5): 554-557, 575.
ZHAO M D, HUAI W X, LI T R.Study of velocity profile of uniform flow in open channels[J]. Engineering journal of Wuhan University, 2010, 43(5): 554-557, 575.
[8] 贺德馨. 风工程与工业空气动力学[M]. 北京: 国防工业出版社, 2006.
HE D X.Wind engineering and industrial aerodynamics[M]. Beijing: National Defense Industry Press, 2006.
[9] 陈存福. 潮流能水平轴水轮机导流罩水动力学特性数值分析[C]//中国可再生能源年会2011年学术年会论文集, 北京, 2011.
CHEN C F.Hydrodynamic numerical simulation of diffuser for horizontal axis tidal-current energy turbine[C]//Proceedings of 2011 Annual Meeting of China Renewable Energy Conference, Beijing, 2011.
[10] 荆丰梅, 张亮, 张鹏远. 潮流能发电增速导流罩研究[J]. 哈尔滨工程大学学报, 2012, 33(4): 1-5.
JIN F M, ZHANG L, ZHANG P Y.Study on an accelerated diffuser of tidal current power generation[J]. Journal of Harbin Engineering University, 2012, 33(4): 1-5.
[11] 王树杰, 盛传明. 潮流能水平轴水轮机湍流模型研究初探[J]. 中国海洋大学学报, 2014, 44(5): 95-100.
WANG S J, SHENG C M.A study on turbulence models of horizontal axis tidal current turbines[J]. Periodical of Ocean University of China, 2014, 44(5): 95-100.
[12] 毛梦娜. 微水头低流速能量收集装置结构设计与仿真分析[D]. 太原: 中北大学, 2020.
MAO M N.Structural design and simulation analysis of micro head low velocity energy collection device[D]. Taiyuan: North University of China, 2020.
[13] 邱飞. 水平轴潮流能发电装置海洋环境载荷与可靠性分析[D]. 青岛: 中国海洋大学, 2012.
QIU F.Environmental load and reliability analysis of horizontal axis turbine tidal current power generation[D]. Qingdao: Ocean University of China, 2012.
[14] 李东阔, 郑源, 张玉全. 基于叶素理论的潮流能水轮机叶片设计研究[J]. 水力发电学报, 2017, 36(7): 113-120.
LI D K, ZHENG Y, ZHANG Y Q.Blade design of tidal current turbines using blade element theory[J]. Journal of hydroelectric engineering, 2017, 36(7): 113-120.
基金
山西省回国留学人员科研资助项目(2020-110)