针对高能流密度下密集阵列光伏组件的冷却控温问题,采用模块化阵列射流冲击装置实现电池控温。基于Fluent软件对密排光伏组件阵列射流冲击换热进行数值模拟,研究不同射流孔径、冲击间距比与射流孔长径比等关键参数对其电池冷却的影响特性,综合分析了质量流量和能流密度变化对其冷却效果和所获电能的影响规律。结果表明冲击间距比对电池的换热效果存在最优值,在本文范围内h3/d=4.5时换热效果最佳,但随着孔径的增大其换热均匀性有所下降;射流孔高度增大,换热效果和电池表面温度均匀性均降低;随着电池表面聚焦能量增加,其发电功率将成比例增加,而电池温度仅有小幅度升高;随着质量流量的合理增加,电池温度大幅度降低,且所产生的压降功耗基本不变。该文工作能为高倍聚光密集阵列光伏组件的高效均匀控温设计提供基础。
Abstract
To investigate the cooling and temperature control of dense array photovoltaic modules under high energy flux density, adopt a modular array jet impingement device to realize the battery temperature control. The numerical simulation of jet impingement heat transfer of dense photovoltaic module array is base on Fluent software. The influence of critical parameters such as different jet aperture, impact spacing-aperture ratio, and jet hole length-diameter ratio on the battery’s cooling was studied. Mass flow and energy flow density on the cooling effect and the obtained electric energy were comprehensively analyzed. The results show that the impact spacing-aperture ratio has an optimal value for the battery’s heat transfer effect, and the heat transfer effect is the best when h3/d=4.5 in this range, but the heat transfer uniformity decreases with the increase of pore size. With the increase of jet hole height, the heat transfer effect and the battery surface’s temperature uniformity decrease. With the increase of the focused energy on the battery surface, the power generation will increase proportion, while the battery temperature will only increase slightly. With the moderate increase of mass flow rate, the battery temperature decreases significantly, and the generated voltage drop power consumption is unchanged. This work can provide a basis for efficient uniform temperature control design of high-power concentrating dense array photovoltaic modules.
关键词
光伏组件 /
能流密度 /
高倍聚光光伏光热系统 /
冲击冷却 /
传热特性
Key words
photovoltaic modules /
energy flux density /
HCPV/T /
impingement cooling /
heat transfer characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩新月. 基于Ⅲ-Ⅴ多结电池高倍聚光光伏系统的技术进展[J]. 太阳能学报, 2012, 33(S1): 28-34.
HAN X Y.Technology development of high concentration photovoltaic systems using Ⅲ-Ⅴ cells[J]. Acta energiae solaris sinica, 2012, 33(S1): 28-34.
[2] YI C, MA F J, MIZUNO H, et al.Application of polydimethylsiloxane surface texturing on III-V//Si tandem achieving more than 2% absolute efficiency improvement[J]. Optics express, 2020, 28(3): 3895-3904.
[3] 康玉, 王子龙, 张华, 等. 串联电阻对三结砷化镓光伏电池电学特性的影响[J]. 热能动力工程, 2020, 35(2): 230-235.
KAN Y, WANG Z L, ZHANG H, et al.Effect of series resistance on electrical characteristics of triple-junction solar cell[J]. Journal of engineering for thermal energy and power, 2020, 35(2): 230-235.
[4] ROYNE A, DEY C J, MILLS D R.Cooling of photovoltaic cells under concentrated illumination: A critical review[J]. Solar energy materials and solar cells, 2005, 86(4): 451-483.
[5] TEO H G, LEE P S, HAWLADER M N A. An active cooling system for photovoltaic modules[J]. applied energy, 2012, 90(1): 309-315.
[6] 王云峰, 常伟, 李明, 等. 直通式真空管空气集热器热性能实验及干燥应用[J]. 太阳能学报, 2020, 41(1): 21-28.
WANG Y F, CHANG W, LI M, et al.Experimental studyon direct pass all-glass evacuated tubular solar air collectorand drying application[J]. Acta energiae solaris sinica, 2020, 41(1): 21-28.
[7] 闫素英, 马晓东, 王峰. 菲涅尔聚光CPVT系统光热输出特性研究[J]. 工程热物理学报, 2017, 38(6): 1178-1183.
YAN S Y, MA X D, WANG F.Study on photothermal output characteristics of finel CPTV system[J]. Journal of engineering thermophysics, 2017, 38(6): 1178-1183.
[8] 闫素英, 李洪阳, 史志国, 等. 太阳能电池冷却用微通道散热器内纳米流体换热特性[J]. 农业工程学报, 2016, 32(13): 212-217.
YAN S Y, LI H Y, SHI Z G, et al.Heat transfer charateristics of nanofluid in microchannel applied on solar cell cooling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 212-217.
[9] 巨星, 李鑫, 张喜良, 等. 歧管式微通道热沉在聚光电池冷却中的应用研究[J]. 中国电机工程学报, 2013, 33(32): 46-53.
JU X, LI X, ZHANG X L, et al.Research on a manifold micro-channel heat sink applied in high concentrated solar cells[J]. Proceedings of the CSEE, 2013, 33(32): 46-53.
[10] 赵正简, 王一平, 孙勇, 等. 碟式高倍液浸聚光光伏系统的实验研究[J]. 太阳能学报, 2016, 37(1): 103-109.
ZHAO Z J, WANG Y P, SUN Y, et al.Experimental research of a dish liquid-immersed high concentrating photovoltaic system[J]. Acta energiae solaris sinica, 2016, 37(1): 103-109.
[11] 韩新月, 陈晓彬, 郭永杰, 等. 老化试验对浸没冷却聚光电池液体性能的影响[J]. 太阳能学报, 2019, 40(12): 3477-3484.
HAN X Y, CHEN X B, GUO Y J, et al.Effect of accelerated lifetime tests on properties of liquids for concentrator solar cells cooling applications[J]. Acta energiae solaris sinica, 2019, 40(12): 3477-3484.
[12] ABO-ZAHHAD E M, OOKAWARA S, RADWAN A, et al. Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling[J]. Energy conversion and management, 2018, 176: 39-54.
[13] YAN J, PENG Y D, CHENG Z R.Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system[J]. Renewable energy, 2018, 129: 431-445.
[14] YAN J, PENG Y D, CHENG Z R.Mirror rearrangement optimization for uniform flux distribution on the cavity receiver of solar parabolic dish concentrator system[J]. International journal of energy research, 2018, 42(11): 3588-3614.
[15] 颜健, 彭佑多, 程自然. 可实现均匀能流分布的太阳能碟式/三角形腔体接收系统的光学特性研究[J]. 太阳能学报, 2020, 41(7): 202-213.
YAN J, PENG Y D, CHENG Z R.Optical characteristics of solar dish concentrator/triangular cavity receive system with uniform flux distribution[J]. Acta energiae solaris sinica, 2020, 41(7): 202-213.
[16] 杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2006: 563.
YANG S M, TAO W Q.Heat transfer[M]. 4 Ed. Beijing: Higher Education Press, 2006: 563.
[17] 王磊, 张靖周, 杨卫华. 密集型阵列冲击射流换热特性实验[J]. 航空动力学报, 2009, 24(6): 1264-1269.
WANG L, ZHANG J Z, YANG W H.Experimental research on heat transfer characteristics of denser jet array impingement[J]. Journal of aerospace power, 2009, 24(6): 1264-1269.
[18] 马朝, 严超, 曹学伟, 等. 阵列空气射流传热均匀性问题的数值研究[J]. 工程热物理学报, 2016, 37(11): 2378-2384.
MA Z, YAN C, CAO X W, et al.Numerical study on array air jet heat transfer uniformity[J]. Journal of engineering thermophysics, 2016, 37(11): 2378-2384.
[19] 吴青, 张靖周, 谭晓茗. 阵列射流-扰流柱复合冷却结构换热和压降特性数值研究[J]. 推进技术, 2020, 41(5): 1112-1120.
WU Q, ZHANG J Z, TAN X M.Numerical study on heat transfer and pressure drop of an integrated array-jets and pin-fins cooling configuration[J]. Journal of propulsion technology, 2020, 41(5): 1112-1120.
基金
湖南省自然科学基金(2019JJ40085; 2020JJ5189); 湖南省教育厅科学研究项目(19C0794)