针对传统时域预报方法的准确性依赖计算时间步长、频域法只能得到稳态响应的问题,基于Laplace变换提出一种新的海上升压站动力振动响应预报方法。通过解耦得到模态坐标系振动方程,在Laplace域求解海上升压站结构振动响应的极值和留数,进而得到时域响应。该方法考虑海上升压站的初始条件,可避免时域积分引起的误差。分别采用悬臂梁模型和导管架式海上升压站模型对该方法进行验证,结果表明了其振动响应预报的准确性。
Abstract
The vibration response analysis and prediction of offshore substation are of great significance to its safe operation. The accuracy of traditional time domain dynamic response analysis method depends on the calculation time step, and frequency domain method can only obtain the steady-state response of the structure. A novel dynamic response prediction method based on Laplace transform is proposed to analyze the dynamic response in this paper. The method decouples the vibrating differential equation to obtain the corresponding decoupled vibrating equations, and implements Laplace transform to those equations. Meanwhile, the modal force is decomposed using complex exponential decomposition method to obtain the corresponding poles and residues. Then, the poles and residues of response can be calculated using limit operation. The dynamic response of offshore substation can be obtained by implementing inverse Laplace transform. The method can consider the initial conditions of offshore substation and avoid the error caused by time domain integration. A cantilever beam model and a jacket type offshore substation model are used to survey the performance of the proposed method, which show the correctness of dynamic response prediction.
关键词
海上风电 /
海上升压站 /
振动分析 /
Laplace变换 /
复指数分解 /
振动响应预报
Key words
offshore wind power /
offshore substation /
vibration analysis /
Laplace transforms /
complex exponential decomposition /
dynamic response prediction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PENZIEN J, KAUL M K.Stochastic response of offshore towers to random sea waves and strong motion earthquakes[J]. Computers & structures, 1972, 2(5-6): 733-756.
[2] BISHOP R E D, PRICE W G. The generalized antisymmetric fluid forces applied to a ship in a seaway[J]. International shipbuilding progress, 1977, 24: 3-14.
[3] KARADENIA H.Spectral analysis of offshore structures under combined wave and earthquake loadings[C]. Proceedings of the ninth international offshore and polar engineering conference, France, Brest, 1999.
[4] 俞聿修, 张宁川. 三桩桩列上的不规则波浪力[J]. 港口工程, 1989(3): 1-7.
[5] 张宁川, 俞聿修. 不规则波作用下的群桩效应[J]. 海洋通报, 1993, 12(3): 95-101.
ZHANG N C, YU Y X.Group pile effects under irregular wave action[J]. Marine science bulletin, 1993, 12(3): 95-101.
[6] 俞聿修, 张宁川. 不规则波作用于双桩桩列上的横向力[J]. 海洋学报, 1991, 13(2): 254-261.
YU Y X, ZHANG N C.Lateral forces acting on a bipile column by irregular waves[J]. Acta oceanologica sinica, 1991, 13(2): 254-261.
[7] 钱景峰. 随机风浪作用下结构的振动响应分析方法研究[D]. 大连: 大连理工大学, 2010.
QIAN J F.Dynamic response analysis methods research of structures under random wind and wave load[D]. Dalian:Dalian University of Technology,2010.
[8] VELETSOS A S, VENTURA C E.Dynamic analysis of structures by the DFT method[J]. Journal of structural engineering, 1985, 111: 2625-2642.
[9] VELETSOS A S, VENTURA C E.Efficient analysis of dynamic response of linear systems[J]. Earthquake engineering and structural dynamics, 1984, 12: 521-536.
[10] LIU F S, LI H J, WANG W Y, et al.Initial-condition consideration by transferring and loading reconstruction for the dynamic analysis of linear structures in the frequency domain[J]. Journal of sound and vibration, 2015, 336: 164-178.
[11] LEE U, KIM S, CHO J.Dynamic analysis of the linear discrete dynamic systems subjected to the initial conditions by using an FFT-based spectral analysis method[J]. Journal of sound and vibration, 2005, 288(1-2): 293-306.
[12] HU S L J, YANG W L, LI H J. Signal decomposition and reconstruction using complex exponential models[J]. Mechanical system and signal processing, 2013, 40(2): 421-438.
[13] HU S L J, LIU F S, GAO B, et al. Pole-residue method for numerical dynamic analysis[J]. Journal of engineering mechanics, 2016, 142(8): 04016045.
基金
国家自然科学基金(51909127); 山东省重点研发计划(2018YFJH0704,2019GHZ007); 浙江省自然科学基金(LQ21E090010); 中国电建集团华东勘测设计研究院有限公司科技项目(KY2021-XNY-01-06)