在大气边界层风洞中模拟C类地貌,对缩尺比为1∶80的高层住宅阳台太阳集热器模型进行刚性模型测压试验。首先,对集热器极值风压系数进行概率分析,结果表明太阳集热器极值风压系数的概率模型归属受面板位置、来流风向的影响较小,广义极值分布可较好地描述集热器极值风压系数的概率分布;其次,研究集热器安装倾角、楼层高度、在阳台上的相对位置等参数对集热器极值风荷载的影响规律,结果表明顶部楼层的阳台集热器表现出与中间楼层集热器不同的风荷载特性,各楼层阳台集热器的风荷载作用效应机理与阳台立面明显不同;倾斜安装于阳台立面的集热器最不利极值风压系数与安装倾角变化并不表现为单调关系;最后,基于包络法给出阳台太阳集热器的极值风压系数设计建议取值。
Abstract
Class C geomorphology is simulated in the atmospheric boundary layer wind tunnel, and a rigid model pressure measurement test is carried out on the solar panel model of high-rise apartment’s balconies with a scale ratio of 1∶80. Firstly, a probabilistic analysis of extreme wind pressure coefficient for the panel is carried out. The results show that the selection of the probabilistic model of the panel extreme wind pressure coefficient is less affected by the panel position and the direction of incoming wind. The generalized extreme distribution can be used to describe the probabilistic model of the panel extreme wind pressure coefficient. Secondly, the effects of installation tilt angle, height, location of the panel, different factors on the extreme wind load characteristics for the solar panel are studied. The results showed that there are different wind load characteristics between top floor’s balcony solar panels and middle floors’ solar panels. The mechanism of wind load effect is obviously different from the balcony facade. The most adverse extreme wind pressure coefficient and the change of installation angle do not show a monotony relationship for the panel inclined to the balcony facade. Finally, the design value of the extreme wind pressure coefficient of the balcony solar panel is proposed based on the envelope method.
关键词
风洞试验 /
太阳集热器 /
压力分布 /
高层建筑 /
风效应 /
阳台
Key words
wind tunnel test /
solar collector /
pressure distribution /
high-rise building /
wind effect /
balcony
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SAHA P K, YOSHIDA A, TAMURA Y.Study on wind loading on solar panel on a flat-roof building: Effects of locations and inclination angles[C]//13th International Conference on Wind Engineering (ICWE), Amsterdam, Netherlands, 2011.
[2] KOPP G A, FARQUHAR S, MORRISON M J.Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays[J]. Journal of wind engineering & industrial aerodynamics, 2012, 111: 40-52.
[3] CAO J, YOSHIDA A, SAHA P K, et al.Wind loading characteristics of solar arrays mounted on flat roofs[J]. Journal of wind engineering & industrial aerodynamics, 2013, 123: 214-225.
[4] PRATT R N, KOPP G A.Velocity measurements around low-profile, tilted, solar arrays mounted on large flat-roofs, for wall normal wind directions[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 226-238.
[5] STATHOPOULOS T, ZISIS I, XYPNITOU E.Wind loads on solar collectors: A review[C]//Structures Congress, Miami, FL, USA, 2012.
[6] 李寿科, 李寿英, 陈政清. 太阳电池板风荷载试验研究[J]. 太阳能学报, 2015, 36(8): 1884-1889.
LI S K, LI S Y, CHEN Z Q.Experimental investigation of wind loading of solar panels[J]. Acta energiae solaris sinica, 2015, 36(8): 1884-1889.
[7] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[8] 余香林, 董锐, 王守强. 典型屋顶太阳能光伏板风压实测研究[J]. 同济大学学报(自然科学版), 2016, 44(4): 542-549.
YU X L, DONG R, WANG S Q.Full-scale measurement and investigation of wind pressure loadings on typical rooftop photovoltaic solar panels[J]. Journal of tongji university (natural science), 2016, 44(4): 542-549.
[9] BANKS D.The role of corner vortices in dictating peak wind loads on tilted flat solar panels mounted on large, flat roofs[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 192-201.
[10] BROWNE M T L, GIBBONS M P M, GAMBLE S, et al. Wind loading on tilted roof-top solar arrays: the parapet effect[J]. Journal of wind engineering & industrial aerodynamics, 2013, 123: 202-213.
[11] STATHOPOULOS T, ZISIS I, XYPNITOU E.Local and overall wind pressure and force coefficients for solar panels[J]. Journal of wind engineering & industrial aerodynamics, 2014, 125: 195-206.
[12] KOPP G A.Wind loads on low-profile, tilted, solar arrays placed on large, flat, low-rise building roofs[J]. Journal of structural engineering, 2014, 140(2): 04013057.
[13] 宫博, 李正农, 王莺歌, 等. 太阳能定日镜结构风载体型系数风洞试验研究[J]. 湖南大学学报(自科版), 2008, 35(9): 6-9.
GONG B, LI Z N, WANG Y G, et al.Wind tunnel test study on the wind load shape coefficient of heliostat[J]. Journal of Hunan University(natural sciences), 2008, 35(9): 6-9.
[14] 李正农, 吴卫祥, 梁笑寒, 等. 基于实测的塔式太阳能定日镜动力特性分析[J]. 太阳能学报, 2014, 35(11): 2133-2138.
LI Z N, WU W X, LIANG X H, et al.Dynamic characteristics analysis for a solar power tower heliostat based on the field measurements[J]. Acta energiae solaris sinica, 2014, 35(11): 2133-2138.
[15] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[16] 全涌, 顾明, 陈斌, 等.非高斯风压的极值计算方法. 力学学报, 2010, 42(3): 560-566.
QUAN Y, GU M, CHEN B, et al.An extreme-value estimating method of non-gaussian wind pressure[J]. Chinese journal of theoretical and applied mechanics, 2010, 42(3):560-566.
[17] 王飞, 全涌, 顾明. 基于广义极值理论的非高斯风压极值计算方法[J]. 工程力学, 2013(2): 54-59.
WANG F, QUAN Y, GU M.An extreme-value estimation method of non-gaussian wind pressure based on generalized extreme value theory[J]. Engineering mechanics, 2013(2): 54-59.
基金
国家自然科学基金(51508184); 湖南省自然科学基金省市联合基金(2021JJ50120)