基于能量流的塔式太阳能热发电吸热器动态建模

吕子奎, 房方

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 132-137.

PDF(2016 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2016 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 132-137. DOI: 10.19912/j.0254-0096.tynxb.2020-1031

基于能量流的塔式太阳能热发电吸热器动态建模

  • 吕子奎1, 房方1,2
作者信息 +

DYNAMIC MODELING OF SOLAR TOWER RECEIVER BASED ON ENERGY FLOW

  • Lyu Zikui1, Fang Fang1,2
Author information +
文章历史 +

摘要

塔式太阳能热发电空气吸热器的最大热应力与其温度变化率成正比,吸热器出口空气温度的动态特性影响塔式光热系统的功率特性。结合热电比拟理论,采用对流换热系数和Rosseland辐射传递方程描述传热过程,建立塔式太阳能热发电系统中碳化硅泡沫陶瓷吸热体的能量流模型。通过剖析空气吸热器工作过程的传热特性,得出平均能流密度、吸热体厚度、平均孔径对出口空气温度、吸热体温度的影响,为该类空气吸热器的设计提供了理论依据。

Abstract

Maximum thermal stress of air receiver for solar tower is proportional to its temperature varying ratio, and air outlet temperature dynamic characteristic relates to power characteristic of the solar tower power generation system. Based on assimilate heat and electricity theory, the energy flow model of silicon carbide foam ceramic absorber in tower solar power generation system is established by using heat transfer coefficient between air flow and ceramic foam and Rosseland radiation model to describe the heat transfer process in which the properties of air are considered variable with temperature. By comparing the simulation results, the heat transfer between air flow in which and ceramic foam was studied, and the influences of the average energy flow density, the thickness of the air receiver and the average cell size on the outlet air temperature and the temperature of the heat absorber are analyzed, which provides a theoretical basis for the design of this kind of air receiv.

关键词

塔式太阳能吸热器 / 碳化硅泡沫陶瓷 / 多孔介质 / 能量流 / 热电比拟

Key words

solar air tower receiver / ceramic foams / porous media / energy flow / assimilate heat and electricity analogy

引用本文

导出引用
吕子奎, 房方. 基于能量流的塔式太阳能热发电吸热器动态建模[J]. 太阳能学报. 2022, 43(6): 132-137 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1031
Lyu Zikui, Fang Fang. DYNAMIC MODELING OF SOLAR TOWER RECEIVER BASED ON ENERGY FLOW[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 132-137 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1031
中图分类号: TP18   

参考文献

[1] 刘世隆, 邓薇. 塔式太阳能热发电技术在我国发展现状与前景分析[J]. 电气技术, 2016(10): 8-10, 22.
LIU S L, DENG W.Current status and perspective for solar power tower technology in China[J]. Electrical engineering, 2016(10): 8-10, 22.
[2] ÁVILA MARíN L A. Volumetric receivers in solar thermal power plants with central receiver system technology: A review[J]. Solar energy, 2011, 85(5): 891-910.
[3] 李鹏. 基于十六碟聚集器的太阳能热转换实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
LI P.Experiment research on solar thermal conversion with sixteen dish concentrator[D]. Harbin: Harbin Institute of Technology, 2014.
[4] 田冲, 张劲松. 太阳能塔式热发电空气吸热器吸热体材料技术[J]. 高科技与产业化, 2008(11): 34-36.
TIAN C, ZHANG J S.Material technology of air receiver for solar tower thermal power generation[J]. High-technology and industrialization, 2008(11): 34-36.
[5] MORAN W, NING P.Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International journal of heat and mass transfer, 2008, 51(5-6): 1325-1331.
[6] FENGWU B.One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver[J]. International journal of thermal sciences, 2010, 49(12): 2400-2404.
[7] WU E Y, WANG Z F.Fully coupled transient modeling of ceramic foam volumetric solar air receiver[J]. Solar energy, 2013, 89(2): 122-133.
[8] ROLDAN M, SMIRNOVA O, FEND T, et al.Thermal analysis and design of a volumetric solar absorber depending on the porosity[J]. Renewable energy, 2014, 62(Feb. ): 116-128.
[9] WU F, ZHOU W J.Numerical simulation of convective heat transfer and pressure drop in two types of longitudinally and internally finned tubes[J]. Heat transfer research, 2015, 46(1): 31-48.
[10] 李青, 白凤武, 王天健, 等. 碳化硅泡沫陶瓷空气吸热器的动态仿真研究[J]. 太阳能学报, 2017, 38(5) : 1200-1205.
LI Q, BAI F W, WANG T J, et al.Dynamic simulation of silicon carbide ceramic foam air receiver[J]. Acta energiae solaris sinica, 2017, 38(5): 1200-1205.
[11] 陈群, 郝俊红, 付荣桓, 等. 基于火积理论的热系统分析和优化的能量流法[J]. 工程热物理学报, 2017, 38(7) : 1376-1383.
CHEN Q, HAO J H, FU R H, et al.Entransy-based power flow method for analysis and optimization of thermal systems[J]. Journal of engineering thermophysics, 2017, 38(7): 1376-1383.
[12] 郝俊红, 陈群, 葛维春, 等. 热特性对含储热电-热联供系统的综合调度影响[J]. 中国电机工程学报, 2019, 39(9) : 2681-2689.
HAO J H, CHEN Q, GE C W, et al.Influence of thermal characteristics on the synthetic scheduling of an integrated heat and power supply system with heat storage[J]. Proceedings of the CSEE, 2019, 39(9): 2681-2689.
[13] 李青, 徐宏. 泡沫陶瓷吸热体结构参数对吸热器性能的影响[J]. 上海电机学院学报, 2018, 21(6): 17-23.
LI Q, XU H.Simulation on influence of structure parameters of ceramic foam absorber on receiver performance[J]. Journal of Shanghai Dianji University, 2018, 21(6): 17-23.
[14] PETRASCH J, WYSS P, STEINFELD A.Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics[J]. Journal of quantitative spectroscopy and radiative transfer, 2007, 105(2): 180-197.
[15] 许昌, 刘德有, 郑源, 等. 塔式太阳能发电多孔介质吸热器动态模型[J]. 中国电机工程学报, 2010, 30(29): 122-127.
XU C, LIU D Y, ZHENG Y, et al.Dynamic models research on a porous media receiver of solar tower power[J]. Proceedings of the CSEE, 2010, 30(29): 122-127.

基金

国家重点研发计划(2018YFE0106600)

PDF(2016 KB)

Accesses

Citation

Detail

段落导航
相关文章

/