跨季节蓄冷特性与系统设计优化

陈明彪, 宋文吉, 王瑛滢, 傅德坤, 冯自平

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 1-7.

PDF(1687 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1687 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 1-7. DOI: 10.19912/j.0254-0096.tynxb.2020-1043

跨季节蓄冷特性与系统设计优化

  • 陈明彪1~4, 宋文吉1~3, 王瑛滢1~4, 傅德坤1~3, 冯自平1~4
作者信息 +

CHARACTERISTICS OF SEASONAL COOL STORAGE TECHNOLOGY AND DESIGN OPTIMIZATION OF SYSTEM

  • Chen Mingbiao1-4, Song Wenji1-3, Wang Yingying1-4, Fu Dekun1-3, Feng Ziping1-4
Author information +
文章历史 +

摘要

考虑现有采暖供冷技术能耗高或适用性低等特点,提出以冰源热泵为核心的跨季节蓄冷技术。以5种系统方案为研究对象,建立系统模型定量评价分析不同方案在不同区域的能耗特性以及经济效益。结果表明:1)方案3(跨季节蓄冷)、方案4(跨季节蓄冷与夜间蓄冷)、方案5(土壤源热泵)的一次能源消耗量和污染物排放量比方案1(空气源热泵)和方案2(集中供热与冷水机组)少50%以上;2)跨季节蓄能技术可有效提高系统的全年COP值,其存储效率和循环次数可达到96%和2.1次;3)上海适用空气源热泵方案,北京适用跨季节蓄冷方案,沈阳适用集中供暖方案;4)在北京,对于3万m2以上供暖供冷面积的大型建筑,采用方案4的增量投资回收期只有约3 a。

Abstract

Considering that the current heating and cooling technology is usually high energy consuming and low usability, seasonal cool storage technology based on ice source heat pump is proposed. By comparison of 5 cases, system model is built. Energy consumption and economic benefits are quantitatively evaluated in different districts. It is found:1)Primary energy consumption and pollutant emissions of Case 3, 4 and 5 are at least 50% lower than Case 1 or 2; 2)Seasonal cool storage technology can increase the yearly COP. The storage effeciency and No. of storage cycles in seasonal cool storage can reach 96% and 2.1; 3)Shanghai is appropriate for ice heat pump. Beijing is appropriate for seasonal cool storage. Shenyang is appropriate for central heating system; 4)For the large building more than 30000 m2 in Beijing, the incremental payback period of Case 3 is only about 3 years.

关键词

蓄冷 / 热泵 / 能效 / 跨季节 / 经济性 / 过冷

Key words

cool storage / heat pump / energy efficiency / seasonal / economy / supercooling

引用本文

导出引用
陈明彪, 宋文吉, 王瑛滢, 傅德坤, 冯自平. 跨季节蓄冷特性与系统设计优化[J]. 太阳能学报. 2022, 43(6): 1-7 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1043
Chen Mingbiao, Song Wenji, Wang Yingying, Fu Dekun, Feng Ziping. CHARACTERISTICS OF SEASONAL COOL STORAGE TECHNOLOGY AND DESIGN OPTIMIZATION OF SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 1-7 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1043
中图分类号: TK02   

参考文献

[1] SCHMIDT T, PAUSCHINGER T, SORENSEN P A, et al.Design aspects for large-scale pit and aquifer thermal energy storage for district heating and cooling[J]. Energy procedia, 2018, 149: 585-594.
[2] 赵璇,赵彦杰,王景刚, 等. 太阳能跨季节储热技术研究进展[J]. 新能源进展, 2017, 5(1): 73-80.
ZHAO X, ZHAO Y J, WANG J G, et al.Research progress on solar seasonal thermal energy storage[J]. Advances in new and renewable energy, 2017, 5(1): 73-80.
[3] MICHEL B, NEVEU P, MAZET N.Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72(1): 702-716.
[4] 荆华乾. 2019年度中国制冷行业政策分析[J]. 制冷技术, 2020, 40(S1): 2-8.
JING H Q.2019 China policy analysis of refrigeration industry[J]. Chinese journal of rsefrigeration technology, 2020, 40(S1): 2-8.
[5] WERNER S.International review of district heating and cooling[J]. Energy, 2017, 137: 617-631
[6] 肖荪. 基于蓄冷率的冰蓄冷空调系统的经济分析[J]. 制冷, 2020, 39(3): 22-30.
XIAO S.Economic analysis of ice storage air conditioning system based on cool storage rate[J]. Refrigeration, 2020, 39(3): 22-30.
[7] 王瑞, 李明, 王云峰, 等. 光伏直驱冰蓄冷空调系统性能分析[J]. 太阳能学报, 2020, 41(4): 30-36.
WANG R, LI M, WANG Y F, et al.Performance analysis of photovoltaic direct-driven ice cool storage air conditioning system[J]. Acta energiae solaris sinica, 2020, 41(4): 30-36.
[8] HEALY P F, UGURSAL V I .Performance and economic feasibility of ground source heat pumps in cold climate[J]. International journal of energy research, 2015, 21(10): 857-870.
[9] 孙春锦, 吴荣华, 孙源渊, 等. 污水源热泵技术研究现状及分析[J]. 暖通空调, 2015, 45(9): 49-53.
SUN C J, WU R H, SUN Y Y, et al.Research status and analysis of sewage-source heat pump technology[J]. Heating ventilating & air conditioning, 2015, 45(9): 49-53.
[10] 李新国, 胡晓辰, 王健. 太阳能、蓄热与地源热泵组合系统能量分析与实验[J]. 太阳能学报, 2012, 33(4): 640-646.
LI X G, HU X C, WANG J.Energy analyses and experiment on solar-ground coupled heat pump with seasonal storage system[J]. Acta energiae solaris sinica, 2012, 33(4): 640-646.
[11] SCHMIDT T, PAUSCHINGER T, SØRENSEN PA, et al. Design aspects for large-scale aquifer and pit thermal energy storage for district heating and cooling[J]. Energy procedia, 2018, 149: 585-599.
[12] 姜益强, 姚杨, 马最良. 空气源热泵结霜除霜损失系数的计算[J]. 暖通空调, 2000, 30(5): 24-26.
JIANG Y Q, YAO Y, MA Z L.Calculation of the loss coefficient for frosting-defrosting of air source heat pumps[J]. Heating ventilating & air conditioning, 2000, 30(5): 24-26.
[13] 钱剑峰. 城市污水源采集凝固热热泵系统节能环保评价[J]. 建筑热能通风空调, 2009, 28(6): 25-29.
QIAN J F.Evaluating on performance of energy-saving and environm ent al protection in urban sewage heat pump system with freezing latent heat collection[J]. Building energy & environment, 2009, 28(6): 25-29.
[14] 谢铭. 地源热泵系统的节能性经济性分析——以大同中院项目为例[D]. 北京: 清华大学, 2016.
XIE M.Economical efficiency and energy conservation research on the ground-source heat pump application of Datong court[D]. Beijing: Tsinghua University, 2016
[15] 褚赛, 魏俊辉, 刘启明, 等. 地埋管地源热泵复合水蓄能系统方案设计及经济性分析[J]. 建筑节能, 2020, 48(2): 58-61, 155.
CHU S, WEI J H, LIU Q M, et al.Scheme design and economic analysis of ground-source heat pump combined with water storage air-conditioning system[J]. Building energy efficiency, 2020, 48(2): 58-61, 155
[16] 赵利君, 周亚素, 张行洋, 等. 地源热泵地埋管周围土壤温度恢复的模拟[J]. 建筑节能, 2010, 38(10): 34-38.
ZHAO L J, ZHOU Y S, ZHANG X Y, et al.Simulation on soil temperature recovery for ground source heat pump[J]. Building energy efficiency, 2010, 38(10): 34-38.

基金

中国科学院先导专项(XDA21070305); 河南省中国科学院科技成果转移转化项目(202001)

PDF(1687 KB)

Accesses

Citation

Detail

段落导航
相关文章

/