灰尘导致的光伏电站发电损失的对比实验

余操, 许盛之, 姚建曦, 朱红路, 赵颖

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 243-248.

PDF(4089 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4089 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 243-248. DOI: 10.19912/j.0254-0096.tynxb.2020-1055
电化学储能安全性与退役动力电池梯次利用关键技术专题

灰尘导致的光伏电站发电损失的对比实验

  • 余操1, 许盛之2~4, 姚建曦1, 朱红路1, 赵颖2~4
作者信息 +

CONTRAST EXPERIMENT FOR GENERATION LOSS OF PHOTOVOLTAIC STATION BY DUSTS

  • Yu Cao1, Xu Shengzhi2~4, Yao Jianxi1, Zhu Honglu1, Zhao Ying2~4
Author information +
文章历史 +

摘要

对地面光伏电站的2个采取不同清洁策略方阵的运行数据和辐照数据分成上午数据和下午数据,分别进行处理和分析。介绍去除数据集中的异常数据和不可信数据的预处理的方法。之后,对比组串的发电数据,发现了2个方阵中发电异常的2个组串。为了研究清洁增益的效果,计算不同太阳辐照度下2个方阵的功率比值。发现对于不同的辐照度,清洁增益的效果有较大差别。在该文实验条件下,在200 W/m2以上的辐照度下,上午的清洁增益约3.3%±2.1%,下午为3.6%±2.0%。

Abstract

The processing methods of the running data are the base of intelligent maintenance for one photovoltaic plant. Data from two array in the same terrain photovoltaic plant is spitted to two parts by before and after the noon. The pre-processed steps are introduced to eliminate the abnormal data. By analyzing the cleaned data, two PV module strings with lower power output caused by partly shading is found. In order to study the effect of cleaning gain, the power ratios of the two arrays under different solar radiation are calculated. It is found that the effect of cleaning gain has great difference for different radiation. Under the experimental conditions in this paper, the cleaning gain is about 3.3%±2.1% in the morning and 3.6%±2.0% in the afternoon at solar radiation above 200 W/m2.

关键词

光伏电站 / 数据分析 / 性能评估 / 发电损失 / 灰尘

Key words

photovoltaic station / data process / performance evaluate / solar energy / power generation loss / dusts

引用本文

导出引用
余操, 许盛之, 姚建曦, 朱红路, 赵颖. 灰尘导致的光伏电站发电损失的对比实验[J]. 太阳能学报. 2022, 43(4): 243-248 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1055
Yu Cao, Xu Shengzhi, Yao Jianxi, Zhu Honglu, Zhao Ying. CONTRAST EXPERIMENT FOR GENERATION LOSS OF PHOTOVOLTAIC STATION BY DUSTS[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 243-248 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1055
中图分类号: TM615   

参考文献

[1] IEA.Renewables information: overview[EB/OL]. https://www.iea.org/reports/renewables-information-overview.
[2] IEC-61724, Photovoltaic system performance monitoring[S].
[3] VAN SARK W, REICH N H,MÜLLER B,et al. Review of PV performance ratio development[C]//World Renewable Energy Forum(WREF 2012), Including World Renewable Energy Congress XII and Colorado Renewable Energy Society(CRES)Annual Conference, Denver, COLO,USA, 2012.
[4] REICH N H,MUELLER B, ARMBRUSTER A, et al. Performance ratio revisited: Is PR>90% realistic?[J]. Progress in photovoltaics: research and applications, 2012, 20(6): 717-726.
[5] DIERAUF T, GROWITZ A, KURTZ S, et al. Weather-corrected performance ratio[R]. NREL/TP-5200-57991, 2013.
[6] ISHII T, OTANI K, TAKASHIMA T.Effects of solar spectrum and module temperature on outdoor performance of photovoltaic modules in round-robin measurements in Japan[J]. Progress in photovoltaics: research and applications, 2011, 19(2): 141-148.
[7] YU J H, XU S Z,HAN S W, et al. Analysis of temperature characteristics and influence factors of solar cells and PV modules[J]. Solar energy, 2018(3): 29-36.
[8] KING D L, BOYSON W E, KRATOCHVILJ A L.Photovoltaic array performance model[R]. SAND2004-3535, 2004.
[9] TOTH S, MULLER M, MILLER D C, et al. Soiling and cleaning: Initial observations from 5-year photovoltaic glass coating durability study[J]. Solar energy materials and solar cells, 2018, 185(1): 375-384.
[10] ILSE K K, FIGGIS B W, NAUMANN V, et al. Fundamentals of soiling processes on photovoltaic modules[J]. Renewable and sustainable energy reviews, 2018, 98(C): 239-254.
[11] SMESTAD G P,GERMER T A,ALRASHIDI H,et al. Modelling photovoltaic soiling losses through optical characterization[R/OL]. Scientific reports, 2020 Jan 9;10(1):58.doi: 10.1038/s41598-019-56868-z.https://pubmed.ncbi.nlm.nih.gov.
[12] ZHOU L, SCHWEDE D B, WYAT A K, et al. The impact of air pollutant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the Community Multiscale Air Quality (CMAQ) model[J]. Science of the total environment, 2019, 651(Pt 1): 456-465.
[13] CHITEKA K, ARORA R, SRIDHARA S N, et al. Numerical investigation of soiling of multi-row rooftop solar PV arrays[J]. International journal of energy and environmental engineering, 2020, 11: 439-458.
[14] MEMICHE M, BOUZIAN C, BENZAHIA A, et al. Effects of dust, soiling, aging, and weather conditions on photovoltaic system performances in a Saharan environment—Case study in Algeria[J]. Global energy interconnection, 2020, 3(1): 60-67.
[15] OLIVARES D, FERRADA P, BIJMAN J, et al. Determination of the soiling impact on photovoltaic modules at the coastal area of the Atacama desert[J]. Energies, 2020, 13(15): 3819.
[16] CHANCHANGI Y N, GHOSH A, SUNDARAM S,et al. Dust and PV performance in Nigeria: A review[J]. Renewable and sustainable energy reviews, 2020, 121: 109704.
[17] BEVILACQUA P, MORABITO A, BRUNO R, et al. Seasonal performances of photovoltaic cooling systems in different weather conditions[J]. Journal of cleaner production, 2020, 272: 122459.
[18] CANO J, JOHN J J, TATAPUDI S, et al. Effect of tilt angle on soiling of photovoltaic modules[C]//IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, COLO, USA, 2014.
[19] CHITEKA K, ARORA R, SRIDHARA S N, et al. A novel approach to solar PV cleaning frequency optimization for soiling mitigation[J]. Scientific African, 2020, 8:e00459.
[20] CHEN E Y, MA L, YUE Y, et al. Measurement of dust sweeping force for cleaning solar panels[J]. Solar energy materials and solar cells, 2018, 179: 247-253.

PDF(4089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/