基于光纤光栅传感器的PEMFC温度监测技术研究

刘康杰, 陈涛, 张城, 刘士华, 宋涵

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 546-550.

PDF(1868 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1868 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 546-550. DOI: 10.19912/j.0254-0096.tynxb.2020-1057

基于光纤光栅传感器的PEMFC温度监测技术研究

  • 刘康杰1, 陈涛1, 张城1, 刘士华2, 宋涵1
作者信息 +

RESEARCH ON TEMPERATURE MONITORING TECHNOLOGY OF PEMFC BASED ON FIBER BRAGG GRATING SENSOR

  • Liu Kangjie1, Chen Tao1, Zhang Cheng1, Liu Shihua2, Song Han1
Author information +
文章历史 +

摘要

为实现实时原位监测PEMFC的内部温度,利用光纤光栅传感技术,将光纤光栅传感器密封埋入PEMFC阴极流场板,同步在线测量不同工况条件下电池内部温度的变化。结果表明,光纤光栅传感器能实现对PEMFC的多点内温度场实时原位监测,随着电流密度阶跃的增大,PEMFC内部温度也呈现阶跃变化,且阴极大流量供气时有利于降低PEMFC内部的温度。该方法可为PEMFC内部状态参数的原位监测提供技术参考和实施方案。

Abstract

In this paper, the fiber bragg grating(FBG) sensing technology is employed to realize the real-time monitoring of the temperature inside fuel cell. The real-time temperature changes under different current conditions are measured by the FBG sensors sealed and embedded in the cathode flow field plate of PEMFC. Results show that the FBG sensors can obtain the real-time in-situ temperature of multiple points inside PEMFC, and with the step change of current density, the temperature also presents a step change. Besides, the temperature can be reduced when the cathode use a large amount of gas supply. The method provides a technical reference and implementation scheme for in-situ monitoring of internal state parameters of PEMFC.

关键词

质子交换膜燃料电池 / 光纤光栅 / 监测 / 温度场 / 电流密度

Key words

proton exchange membrane fuel cell / fiber bragg grating monitoring / temperature field / current density

引用本文

导出引用
刘康杰, 陈涛, 张城, 刘士华, 宋涵. 基于光纤光栅传感器的PEMFC温度监测技术研究[J]. 太阳能学报. 2022, 43(6): 546-550 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1057
Liu Kangjie, Chen Tao, Zhang Cheng, Liu Shihua, Song Han. RESEARCH ON TEMPERATURE MONITORING TECHNOLOGY OF PEMFC BASED ON FIBER BRAGG GRATING SENSOR[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 546-550 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1057
中图分类号: TM911.4   

参考文献

[1] 包宁. 质子交换膜燃料电池扩散层变形对流道内水传输的影响[D]. 天津: 天津大学, 2013: 1-2.
BAO N.Effect of diffusion layer deformation on water transport in proton exchange membrane fuel cell[D]. Tianjin: Tianjin University, 2013: 1-2.
[2] CARLOTTA F, VIJAVKUMAR S, STEFANIA S, et al.Estimation of hydrogen cross over through Nafion membranes in PEMFCs[J]. Journal of power sources, 2011, 196: 1833-1839.
[3] 温小飞, 肖金生, 潘牧, 等. 质子交换膜燃料电池的温度场模拟[J]. 武汉理工大学学报(交通科学与工程版), 2006(1): 113-116.
WEN X F, XIAO J S, PAN M, et al.Temperature field simulation of proton exchange membrane fuel cell[J]. Journal of Wuhan University of Technology(transportation science and engineering edition), 2006(1): 113-116.
[4] HENG S, QIU D K, YI P Y, et al.In-situ measurement of temperature and humidity distribution in gas channels for commercial-size proton exchange membrane fuel cells[J]. Journal of power sources, 2019, 412: 717-724.
[5] KRISTOPHER I, WANG X, BRIAN S.Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry[J]. Journal of power sources, 2010, 195: 4753-4757.
[6] FANG-BOR W, CHIH-KAI C, CHI-YUAN L.Analysis of thermal balance in high-temperature proton exchange membrane fuel cells with short stacks via in situ monitoring with a flexible[J]. International journal of hydrogen energy, 2014, 39(25): 13681-13686.
[7] JIAN Q F, JING Z.Experimental study on spatiotemporal distribution and variation characteristics of temperature in an open cathode proton exchange membrane fuel cell stack[J]. International journal of hydrogen energy, 2019, 44(49): 27079-27093.
[8] WAN Z M, SHEN J, ZHANG H N, et al.In situ temperature measurement in a 5 kW-class proton exchange membrane fuel cell stack with pure oxygen as the oxidant[J]. International journal of heat and mass transfer, 2014, 75: 231-234.
[9] ZHANG G S, GUO L J, MA L Z, et al.Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell[J]. Journal of power sources, 2010, 195(11): 3597-3604.
[10] DING Y T, NA C, CHEN Z Y, et al.Dynamic temperature monitoring and control with fully distributed fiber bragg grating sensor[C]//International Society for Optics and Photonics, Beijing, China, 2010, 7845: 367-370.
[11] MOHAMMED A, HU B, HU Z, et al.Distributed thermal monitoring of wind turbine power electronic modules using FBG sensing technology[J]. IEEE sensors journal, 2020,20(17): 9886-9894.

基金

国家自然科学基金(51975445); 武汉市科技计划(2018010401011329)

PDF(1868 KB)

Accesses

Citation

Detail

段落导航
相关文章

/