该研究成功构建4种杂合纤维小体支架蛋白,并将纤维素酶与其在胞外组装成空间结构不同的嵌合纤维小体,分析了嵌合纤维小体的酶的热稳定性和酶解动力学特征。并基于酿酒酵母EBY100细胞表面展示系统锚定优化前后的支架蛋白以组装嵌合纤维小体进行纤维素同步糖化发酵产乙醇性能分析。结果表明嵌合纤维小体的酶活性在50 ℃下维持相对稳定状态达到120 h。其中ScafI-IV型支架蛋白嵌合纤维小体的Vmax=0.147 mg/(mL·min),Km=6.085 mg/mL及水解纤维素的还原糖产量均高于其他3种结构嵌合纤维小体。CBP酿酒酵母菌群以磷酸膨胀纤维素为底物进行同步糖化发酵产乙醇,ScafI-IV型结构嵌合纤维小体在96 h时乙醇产量达到1.12 g/L,产量为0.263 g/g,相当于乙醇产率理论值的51.50%。该结果证明通过优化支架蛋白结构可改善嵌合纤维小体的酶解性能,并对于人工设计纤维小体的研究具有一定的理论意义。
Abstract
In this study, four different heterozygous fibrin scaffold proteins were successfully constructed. Cellulase and its extracellular assembly into a different spatial structure of chimeric designer cellulosome. The thermal stability and enzymatic hydrolysis kinetics of chimeric designer cellulosome were analyzed. The influence of different structures on the hydrolysis activity of designer cellosome and its optimal scaffold proteins structure was explored. Based on the Saccharomyces cerevisiae eby100 surface display system, the optimized scaffold protein was anchored and the performance of simultaneous saccharification and ethanol fermentation were assayed on PSAC. The results show that the enzyme activity of the designer cellosome remains relatively stable at 50 ℃ for 120 hours, the Vmax=0.147 mg/(mL·min), Km=6.085 mg/mL and the reducing sugar production of ScafI-IV designer cellosome are all higher than those of the other cellosomes structural, which indicates the ScafI-IV type has a excellence substrate affinity and hydrolysis property. The maximum ethanol production is 1.12 g/L after 96 h, and the output is 0.263 g/g, which is equivalent to 51.50% of the theoretical value of ethanol yield. This result proves that the enzymolysis performance of the designer cellosome can be improved by structure optimizing of the scaffold proteins, which has reference significance for the research of artificially designing the cellosome.
关键词
酿酒酵母 /
纤维素乙醇 /
空间结构 /
表面展示 /
纤维小体
Key words
Saccharomyces cerevisiae /
cellulosic ethanol /
spatial structural /
surface display /
fibrous corpuscle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王金兰, 王禄山, 刘巍峰, 等. 降解纤维素的“超分子机器”研究进展[J]. 生物化学与生物物理进展, 2011, 38(1): 28-35.
WANG J L, WANG L S, LIU W F, et al.Research advances on the assembly mode of cellulosomal macromolecular complexes[J]. Progress in biochemistry and biophysics, 2011, 38(1): 28-35.
[2] ARTZI L, BAYER E A, MORAÏS S. Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides[J]. Nature reviews microbiology, 2017, 15(2): 83-95.
[3] KATAEVA I A, UVERSKY V.Cellulosome (molecular anatomy and physiology of proteinaceous machines)[M]. Beijing: Chemical Industry Press, 2011.
[4] FIEROBE H P, MECHALY A, TARDIF C, et al.Design and production of active cellulosome chimeras—Selective incorporation of dockerin-containing enzymes into defined functional complexes[J]. Journal of biological chemistry, 2001, 276(24): 21257-21261.
[5] KOUKIEKOLO R, CHO H Y, AKIHIKO K, et al.Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffoldin protein CbpA[J]. Applied and environmental microbiology, 2005, 71(7): 3504-3511.
[6] MCCLENDON S D, MAO Z, SHIN H D, et al.Designer xylanosomes: Protein nanostructures for enhanced xylan hydrolysis[J]. Applied biochemistry and biotechnology, 2012, 167(3): 395-411.
[7] SUN J, WEN F, SI T, et al.Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome[J]. Applied and environmental microbiology, 2012, 78(11): 13837-3845.
[8] TANG H, WANG J, WANG S, et al.Efficient yeast surface-display of novel complex synthetic cellulosomes[J]. Microbial cell factories, 2018, 17(1): 2-13.
[9] TIAN S, DU J L, BAI Z S, et al.Design and construction of synthetic cellulosome with three adaptor scaffoldins for cellulosic ethanol production from steam-exploded corn stover[J]. Cellulose, 2019, 26(15): 8401-8415.
[10] 陈宁, 杜济良, 田沈, 等. 自组装嵌合纤维小体酿酒酵母菌群的乙醇发酵研究[J]. 太阳能学报, 2018, 39(8): 2103-2109.
CHEN N, DU J L, TIAN S, et al.Study of ethanol fermentation of self-assembled designer cellulosome on Saccharomyces cerevisiae[J]. Acta energiae solaris sinica, 2018, 39(8): 2103-2109.
[11] ZHANG P, WANG B, XIAO Q, et al.A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum[J]. Bioresource technology, 2015, 190: 36-43.
[12] MO C L, CHEN N, LYU T, et al.Direct ethanol production from steam-exploded corn stover using a synthetic diploid cellulase-displaying yeast consortium[J]. Bioresources, 2015, 10(3): 4460-4472.
[13] 王博伟, 闫雪晴, 何贤, 等. 纤维素可及性对木质纤维酶水解影响的研究进展[J]. 纤维素科学与技术, 2020, 28(1): 61-68.
WANG B W, YAN X Q, HE X, et al.Progress of the effects of cellulose accessibility on enzymatic hydrolysis of lignocellulose[J]. Journal of cellulose science and technology, 2020, 28(1): 61-68.
[14] STERN J, KAHN A, VAZANA Y, et al.Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis[J]. PLOS one, 2015, 10(5): 0127326.
[15] BARTH A, HENDRIX J, FRIED D, et al.Dynamic interactions type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum[J]. Proceedings of the national academy of sciences of the United States of America, 2018, 115(48): E11274-E11283.
基金
国家自然科学基金(31971202); 国家科技支撑计划(2019YFB1503802); 科技创新服务能力建设资助项目(025185305000/198)