阻塞比对潮流能水轮机尾流特性影响数值模拟研究

李岩伟, 张玉全, 郑源, 张智, 郭绘娟, 战谊

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 256-263.

PDF(2481 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2481 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 256-263. DOI: 10.19912/j.0254-0096.tynxb.2020-1071

阻塞比对潮流能水轮机尾流特性影响数值模拟研究

  • 李岩伟1, 张玉全1, 郑源1, 张智2, 郭绘娟1, 战谊3
作者信息 +

NUMERICAL SIMULATION STUDY ON INFLUENCE OF BLOCKAGE RATIO ON WAKE CHARACTERISTICS OF TIDAL TURBINE

  • Li Yanwei1, Zhang Yuquan1, Zheng Yuan1, Zhang Zhi2, Guo Huijuan1, Zhan Yi3
Author information +
文章历史 +

摘要

首先通过对比分析数值模拟结果与水槽实验尾流场速度数据,验证数值模拟的准确性。通过在软件STAR-CCM+中改变水槽宽度的模型,使水轮机阻塞比分别在9.8%、14.7%和29.5%的情况下进行模拟计算,分析潮流能水轮机尾流特性的变化。结果显示,阻塞比的变化不仅会改变水轮机扫略区域外流体速度,影响远尾流恢复速度,还会对尾流的旋转和湍动能分布造成影响;但随着槽宽增加阻塞比减小,其对尾流特性影响逐渐减弱。

Abstract

By comparing and analyzing the numerical simulation results with the experimental data, the accuracy of numerical simulation is verified. By changing the width of flume model to change the blockage ratio, the wake characteristics is analyzed under the condition of the blockage ratio of 9.8%,14.7% and 29.5% respectively using STAR-CCM+. The results show that variation of blocking ratio will not only change the fluid velocity outside the sweep area, but also affect the recovery in the far wake, and also affect the rotation and turbulent kinetic energy distribution. However, with the increase of the flume width, the blockage ratio decreases, the influence on wake characteristics is gradually weakened.

关键词

潮流能 / 水轮机 / 数值模拟 / 尾流特性 / 阻塞比

Key words

tidal energy / water turbine / numerical simulation / wake characteristics / blockage ratio

引用本文

导出引用
李岩伟, 张玉全, 郑源, 张智, 郭绘娟, 战谊. 阻塞比对潮流能水轮机尾流特性影响数值模拟研究[J]. 太阳能学报. 2022, 43(6): 256-263 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1071
Li Yanwei, Zhang Yuquan, Zheng Yuan, Zhang Zhi, Guo Huijuan, Zhan Yi. NUMERICAL SIMULATION STUDY ON INFLUENCE OF BLOCKAGE RATIO ON WAKE CHARACTERISTICS OF TIDAL TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 256-263 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1071
中图分类号: TK513.5   

参考文献

[1] 张步恩, 郑源, 付士凤, 等. 一种新型波浪能发电转换装置试验研究[J]. 中国电机工程学报, 2019, 39(24): 7263-7271.
ZHANG B E, ZHENG Y, FU S F, et al.Experimental study of a new type wave energy converter[J]. Proceedings of the CSEE, 2019, 39(24): 7263-7271.
[2] 张亮, 李新仲, 耿敬, 等. 潮流能研究现2013[J]. 新能源进展, 2013,1(1): 57-72.
ZHANG L, LI X Z, GENG J,et al.Tidal current energy update 2013[J]. Advances in new and renewable energy, 2013, 1(1): 57-72.
[3] WANG S J, YUAN P, LI D, et al.An overview of ocean renewable energy in China[J]. Renewable & sustainable energy reviews, 2011, 15: 91-111.
[4] 袁鹏, 刘小栋, 王树杰, 等. 潮流能水轮机阵列方式与其产能关系研究[J]. 可再生能源, 2019, 37(9): 1406-1414.
YUAN P,LIU X D,WANG S J,et al.Research on relationship between arrangement of tidal turbines array and its actual power output[J]. Renewable energy resources, 2019, 37(9): 1406-1414
[5] PACHECO A, FERREIRA Ó.Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario[J]. Applied energy, 2016, 180: 369-385.
[6] 张亮, 尚景宏, 张之阳, 等. 潮流能研究现状2015: 水动力学[J]. 水力发电学报,2016, 35(2): 1-15.
ZHANG L, SHANG J H, ZHANG Z Y, et al.Tidal current energy update 2015[J]. Journal of hydroelectric engineering, 2016, 35(2): 1-15.
[7] MYERS L E, BAHAJ A S.An experimental investigation simulating flow effects in first generation marine current energy converter arrays[J]. Renewable energy, 2012, 37: 28-36.
[8] MYERS L E, BAHAJ A S.Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37: 218-227.
[9] HARRISON M E,BATTEN W M J, MYERS L E, et al. Comparison between CDF simulations and experiments for predicting the far wake of horizontal axis tidal turbines[J]. IET renewable power generation, 2010, 4(6): 613-627.
[10] 沈云,李龙,朱多彪. 水平轴潮流水轮机转轮尾流特性数值分析[J]. 水电能源学, 2013, 31(10): 149-151.
SHEN Y, LI L, ZHU D B.Numerical analysis of wake performance of horizontal axis tidal current turbine[J]. Water resources and power, 2013, 31(10): 149-151.
[11] 郑源, 李东阔, 张玉全, 等. 单桩结构的潮流能水轮机尾流流场分析[J]. 太阳能学报, 2019, 40(11): 3031-3038.
ZHENG Y, LI D K, ZHANG Y Q, et al.Study on wake effect of horizontal axis marine current turbine based on single pile support structure[J]. Acta energiae solaris sinica, 2019, 40(11): 3031-3038.
[12] ZANG W, ZHENG Y, ZHANG Y Q, et al.Experiments on the mean and integral characteristics of tidal turbine wake in the linear waves propagating with the current[J]. Ocean engineering, 2019, 173: 1-11.
[13] ZHANG Y Q, ZHANG J S, LIN X F.Experimental investigation into downstream field of a horizontal axis tidal stream turbine supported by a mono pile[J]. Applied ocean research, 2020, 101: 102257.
[14] 张玉全, 赵梦晌, 郑源, 等. 不同湍流强度下潮流能水轮机尾流特性试验研究[J]. 中国电机工程学报, 2020, 40(15): 4902-4909.
ZHANG Y Q, ZHAO M S, ZHENG Y, et al.Experimental study of different turbulence intensities effect on the wake characteristics of tidal turbines[J]. Proceedings of the CSEE, 2020, 40(15): 4902-4909.
[15] MYCEK P, GAURIERB B, GERMAIN G, et al.Numerical and experimental study of the interaction between two marine current turbines[J]. International journal of marine energy, 2013, 1: 70-83.
[16] TEDDS S C, OWEN I, POOLE R J.Near-wake characteristics of a model horizontal axis tidal stream turbine[J]. Renewable energy, 2014, 63: 222-35.
[17] KOH W X M, NG E Y K. A CFD study on the performance of a tidal turbine under various flow and blockage conditions[J]. Renewable energy, 2017, 107: 124-137.
[18] NISHINO T, WILLDEN R H J. The efficiency of an array of tidal turbines partially blocking a wide channel[J]. Journal of fluid mechanics, 2012, 708: 596-606.
[19] 赵梦晌,郑源,杨春霞,等. 基于流体体积模型的叶片数对水车性能的影响[J]. 排灌机械工程学报, 2020, 38(7): 677-682.
ZHAO M S, ZHENG Y, YANG C X, et al.Performance study of waterwheel for different numbers of blades based on VOF[J]. Journal of drainage and irrigation machinery engineering, 2020, 38(7): 677-682.
[20] ZHANG Y Q, FERNANDEZ R, ZHENG J.A review on numerical development of tidal stream turbine performance and wake prediction[J]. IEEE access, 2020, 8: 79325-79337.
[21] 王树杰,盛传明,袁鹏,等. 潮流能水平轴水轮机湍流模型研究初探[J].中国海洋大学学报(自然科学版), 2014, 44(5): 95-100, 113.
WANG S J, SHENG C M, YUAN P, et al.Study on turbulence model of tidal current energy horizontal axis turbine[J]. Periodical of Ocean University of China(natural science edition), 2014, 44(5): 95-100, 113.
[22] SANDERSE B, VAN-DER PIJL S P, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind energy, 2011, 14: 799-819.
[23] DALY T, MYERS L E, BAHAJ A S.Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel[J]. Philosophical Transactions of the Royal Society A: Mathematical, physical and engineering sciences, 2013, 371: 20120246.
[24] 李东阔, 郑源, 张飞, 等. 横向布置单桩潮流能水轮机的数值模拟研究[J]. 可再生能源, 2020, 38(6): 784-790.
LI D K, ZHENG Y, ZHANG F, et al.Numerical simulation study of single pile tidal stream turbine with different lateral spacing[J]. Renewable energy resources, 2020, 38(6): 784-790.
[25] CONSUL C A, WILLDEN R, MCINTOSH S.Blockage effects on the hydrodynamic performance of a marine cross-flow turbine[J]. Philosophical Transactions of the Royal Society A: Mathematical, physical and engineering sciences, 2013, 371(1985): 20120299.
[26] CHURCHFIELD M J, LI Y, MORIARTY P J.A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines[J]. Philosophical Transactions of the Royal Society A: Mathematical, physical and engineering sciences, 2013, 371(1985): 20120421.

基金

国家自然科学基金(52171257; 51809083)

PDF(2481 KB)

Accesses

Citation

Detail

段落导航
相关文章

/