低温地热双循环式发电系统横管喷淋降膜蒸发器传热性能实验研究

胡冰, 郭嘉俊, 黄斯珉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 493-498.

PDF(1960 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1960 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 493-498. DOI: 10.19912/j.0254-0096.tynxb.2020-1081

低温地热双循环式发电系统横管喷淋降膜蒸发器传热性能实验研究

  • 胡冰1,2, 郭嘉俊1,2, 黄斯珉1,2
作者信息 +

EXPERIMENTAL STUDY ON HORIZONTAL TUBE SPRAY FALLING FILM EVAPORATOR IN LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER SYSTEM

  • Hu Bing1,2, Guo Jiajun1,2, Huang Simin1,2
Author information +
文章历史 +

摘要

以R245fa为工质,搭建有机朗肯循环(ORC)发电系统横管喷淋降膜蒸发器传热测试平台,研究有机工质喷淋密度,地热水初温及流率等因素对管外换热系数的影响。实验结果表明:随着有机工质喷淋密度、地热水初温、地热水流率的增大,传热系数均先增大后减小。最后,根据实验结果,对现有横管喷淋降膜蒸发器的管外传热系数经验公式的参数进行修正。

Abstract

A falling film evaporator heat transfer test plant for organic Rankine cycle(ORC)power generation system is built. The effects of spray density, initial temperature and flow rate of geothermal water on the heat transfer coefficient outside the tube are studied with R245fa as working fluid. The results show that the heat transfer coefficient increases first and then decreases with the increase of spray density of organic working fluid, initial temperature of geothermal water and flow rate of geothermal water. By analyzing the experimental results, the parameters of the existing empirical formulas of falling film evaporation outside horizontal tubes are modified, and the experimental correlation of heat transfer coefficients of falling film evaporation outside tubes under the combined action of multiple factors is obtained.

关键词

传热系数 / 地热能 / 蒸发 / 朗肯循环 / 降膜蒸发器 / 横管降膜

Key words

heat transfer coefficients / geothermal energy / evaporation / Rankine cycle / falling film evaporator / horizontal tube falling film

引用本文

导出引用
胡冰, 郭嘉俊, 黄斯珉. 低温地热双循环式发电系统横管喷淋降膜蒸发器传热性能实验研究[J]. 太阳能学报. 2022, 43(7): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1081
Hu Bing, Guo Jiajun, Huang Simin. EXPERIMENTAL STUDY ON HORIZONTAL TUBE SPRAY FALLING FILM EVAPORATOR IN LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1081
中图分类号: TK221   

参考文献

[1] 魏东红, 鲁雪生, 顾建明. 移动边界模型应用于废热驱动的ORC系统的动态仿真[J]. 上海交通大学学报, 2006, 44(8): 1394-1402.
WEI D H, LU X S, GU J M.Moving boundary model application in the dynamic simulation of an Organic Rankine Cycle (ORC) system driven by exhaust[J]. Journal of Shanghai Jiao Tong University, 2006, 44(8): 1394-1402.
[2] HUNG T C.Waste heat recovery of Organic Rankine Cycle using dry fluids[J]. Energy conversion and management, 2001, 42(5): 539-553.
[3] MAIZZA V, MAIZZA A.Unconventional working fluids in Organic Rankine Cycles for waste energy recovery systems[J]. Applied thermal engineering, 2001, 21(3): 381-390.
[4] RIBATSKI G, JABARDO J S.Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces[J]. International journal of heat and mass transfer, 2003, 46: 4439-4451.
[5] DANILOVA G N, BURKIN V G, DYUNDIN V A.Heat transfer spray-type refrigerator evaporators[J]. Heat transfer, soviet research, 1976, 8(6): 105-113.
[6] LIU P.The evaporating falling film on horizontal tubes[D]. Madison: University of Wisconsin-Madison, 1975.
[7] CHANG T B, LU C C, LI J C.Enhancing the heat transfer performance of triangular-pitch shell-and-tube evaporators using an interior spray technique[J]. Applied thermal engineering, 2009, 29(11-12): 2572-2533.
[8] ZENG X, CHYU M C.Evaporation heat transfer performance of nozzle sprayed ammonia on a horizontal tube[J]. ASHRAE transactions, 1995, 101: 136-149.
[9] ZENG X, CHYN M C, AYUB Z H.Experimental investigation on ammonia spray evaporators with triangular-pitch plain-tube bundle, Part II. evaporator performance[J]. International journal of heat and mass transfer, 2001, 44(12): 2081-2092.
[10] MOEYKENS S, NEWTON B, PATE M.Effects of surface enhancement film feed supply rate, and bundle geometry on spray evaporation heat transfer performance[J]. ASHRAE transactions, 1995, 101(2): 408-419.
[11] MOEYKENS S, KELLY J, PATE M.Spray evaporation heat transfer performance of R-123 in tube bundles[J]. ASHRAE transactions, 1996, 102(2): 259-272.
[12] PARKEN W.Heat transfer to thin films on horizontal tubes[D]. New Brunswick: Rutgers University, 1975.
[13] 因克罗普拉∙F P,德威特∙D P. 传热基础[M]. 北京: 宇航出版社,1987.
INCORPRA F P, DEWITT D P.Fundamentals of heat transfer[M]. Hoboken: John Wiley and Sons Ltd., 1987.
[14] EDAHIRO K, HAMADA T.Research and development of multi-effect horizontal tube film evaporator[J]. Desalination, 1977, 22: 121-130.
[15] CHUN K R, SEBAN R A.Performance of prediction of falling film evaporators[J]. ASME journal of heat transfer, 1972, 94: 432~436.

基金

国家自然科学基金面上项目(51876042); 广东省分布式能源系统重点实验室(2020B1212060075); 东莞理工学院技术服务小分队(GC200104-47; 193900145; 196100045030)

PDF(1960 KB)

Accesses

Citation

Detail

段落导航
相关文章

/