光-储虚拟同步机多模式运行控制与改善储能系统寿命的选择性投退策略

杨晓楠, 李洋, 史梁, 孙亚帅, 吕昌昊, 郎燕生

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 66-74.

PDF(2164 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2164 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 66-74. DOI: 10.19912/j.0254-0096.tynxb.2020-1084
电化学储能安全性与退役动力电池梯次利用关键技术专题

光-储虚拟同步机多模式运行控制与改善储能系统寿命的选择性投退策略

  • 杨晓楠1, 李洋2, 史梁3, 孙亚帅3, 吕昌昊3, 郎燕生1
作者信息 +

MULTI-MODE OPERATING CONTROL OF OPTICAL-STORAGE VIRTUAL SYNCHRONIZER AND SELECTIVELY PLUG IN/OUT STRATEGY FOR IMPROVING ENERGY STORAGE SYSTEM LIFETIME

  • Yang Xiaonan1, Li Yang2, Shi Liang3, Sun Yashuai3, Lyu Changhao3, Lang Yansheng1
Author information +
文章历史 +

摘要

该文研究光储虚拟同步机不同运行模式及其控制方法,提出改善储能寿命的VSG选择性投退策略。结合光储特点和电网需要提出光储系统实施VSG的 4 种运行模式及其功率协调控制方法。为降低负荷实时扰动带来的VSG成本,提出依据扰动大小选择性投入VSG的策略,通过离线求解模型方程组得到VSG投入时刻,在线根据扰动频率变化进行匹配的方法实现选择性启动VSG,使电网优先利用物理发电机惯量。为避免电网受扰后频率恢复阶段光储VSG二次吞吐电量而影响储能寿命并降低频率恢复速度,提出光储VSG动态退出方案,构建了基于电网频率动态特征的VSG退出判据。仿真结果验证了该文分布式光储VSG控制策略和选择性启停方案的正确性及有效性。

Abstract

This paper researches on the VSG control and plug in/out strategy of PV & Energy Storage Integrated System (PESIS). Considering the equipped parameters and work status of storage, operating modes is concluded for PESIS, and the control strategy is provided for different modes. In order to reduce the VSG cost caused by real-time load disturbance, a strategy of selective VSG input based on the disturbance size is proposed. The VSG input time is obtained by solving model equations offline, and the selective START of VSG is realized by matching the disturbance frequency variation online, so that the power grid can give priority to the use of the inertia of physical generator. To avoid the secondary VSG charging/discharging as well as the depression of the frequency restoring rate, a plug out strategy when the power system frequency gets restored after disturbance is provided. Criterion of detecting the restoring moment of transient frequency is established. Simulation results show that the control algorithm and the plug in and out scenario are effective.

关键词

频率响应 / 同步发电机 / 储能 / 虚拟同步机 / 储能寿命

Key words

frequency response / synchronous generator / energy storage / virtual synchronous generator / storage life

引用本文

导出引用
杨晓楠, 李洋, 史梁, 孙亚帅, 吕昌昊, 郎燕生. 光-储虚拟同步机多模式运行控制与改善储能系统寿命的选择性投退策略[J]. 太阳能学报. 2022, 43(4): 66-74 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1084
Yang Xiaonan, Li Yang, Shi Liang, Sun Yashuai, Lyu Changhao, Lang Yansheng. MULTI-MODE OPERATING CONTROL OF OPTICAL-STORAGE VIRTUAL SYNCHRONIZER AND SELECTIVELY PLUG IN/OUT STRATEGY FOR IMPROVING ENERGY STORAGE SYSTEM LIFETIME[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 66-74 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1084
中图分类号: TM761+.2   

参考文献

[1] 康重庆, 姚良忠.高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q,YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[2] XIONG L S, ZHUO F, WANG F, et al. Static synchronous generator model: A new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter[J]. IEEE transactions on power electronics, 2016, 31(9): 6264-6280.
[3] 陈国平, 董昱, 梁志峰.能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020,40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and thinking on the high-quality development of new energy with Chinese characteristics in the energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[4] GU H J, YAN R F,TAPAN K S.Minimum synchronous inertia requirement renewable power systems[J]. IEEE transactions on power systems, 2018, 33(2): 1533-1543.
[5] ZHONG Q C, GEORGE W.Synchronverters: Inverters that mimic synchronous generators[J]. IEEE transactions on industrial electronics, 2011, 58(4): 1259-1267.
[6] DELILLE G, FRANCOIS B, MALARANGE G.Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia[J]. IEEE transactions on sustainable energy, 2012, 3(4): 931-939.
[7] ZHONG Q C.Virtual synchronous machines: A unified interface for grid integration[J]. IEEE power electronics magazine, 2016, 3(4): 18-27.
[8] 钟庆昌.虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-349.
ZHONG Q C.Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37(2): 336-349.
[9] 吴恒, 阮新波, 杨东升, 等. 虚拟同步发电机功率环的建模与参数设计[J]. 中国电机工程学报, 2015, 35(24): 6508-6518.
WU H, RUAN X B, YANG D S, et al. Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24): 6508-6518.
[10] 刘尧, 陈建福, 侯小超, 等. 基于自适应虚拟惯性的微电网动态频率稳定控制策略[J]. 电力系统自动化, 2018, 42(9): 75-82, 140.
LIU Y, CHEN J F, HOU X C, et al. Dynamic frequency stability control strategy of microgrid based on adaptive virtual inertia[J]. Automation of electric power systems, 2018, 42(9): 75-82, 140.
[11] ALIPOOR J, MIURA Y, TOSHIFUMI I.Stability assessment and optimization methods for microgrid with multiple VSG units[J]. IEEE transactions on smart grid, 2018, 9(2): 1462-1471.
[12] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42-52.
ZHANG B, YAN X W, HUANG Y B, et al. Stability control and inertia matching method of multi-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42-52.
[13] 温春雪, 黄耀智, 胡长斌, 等. 虚拟同步发电机接口变换器并联运行虚拟阻抗自适应控制研究[J]. 电工技术学报, 2020(S02): 494-502.
WEN C X,HUANG Y Z,HU C B, et al. Adaptive control of virtual impedance in parallel operation of virtual synchronous generator interface converter[J]. Transactions of China Electrotechnical Society,2020(S02): 494-502.
[14] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360.
LYU Z P, SHENG W X, LIU H T, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360.
[15] 吴永斌, 王素娥, 熊连松, 等. 光储一体化并网发电系统的惯量阻尼机理分析[J]. 电力系统自动化, 2020, 44(6): 129-144.
WU Y B, WANG S E, XIONG L S, et al. Analysis on inertia and damping mechanism of grid-connected power generation system integrated with photovoltaic and energy storage systems[J]. Automation of electric power systems, 2020, 44(6): 129-144.
[16] 曾正, 邵伟华, 冉立, 等. 虚拟同步发电机的模型及储能单元优化配置[J]. 电力系统自动化, 2015, 39(13): 22-31.
ZENG Z, SHAO W H, RAN L, et al. Mathematical model and strategic energy storage selection of virtual synchronous generators[J]. Automation of electric power systems, 2015, 39(13): 22-31.
[17] 张波, 张晓磊, 贾焦心, 等. 基于惯量支撑和一次调频需求的VSG储能单元配置方法[J]. 电力系统自动化, 2019, 43(23): 202-209.
ZHANG B, ZHANG X L, JIA J X, et al. Configuration method for energy storage unit of virtual synchronous generator based on requirements of inertia support and primary frequency regulation[J]. Automation of electric power systems, 2019, 43(23): 202-209.
[18] 李吉祥, 赵晋斌, 屈克庆, 等. 考虑SOC特性的微电网VSG运行参数边界分析[J]. 电网技术, 2018, 42(5): 1451-1457.
LI J X, ZHAO J B, QU K Q, et al. Boundary analysis of operation parameters of microgrid VSG considering SOC characteristics[J]. Power system technology, 2018, 42(5): 1451-1457.
[19] 袁敞, 刘昌, 赵天扬, 等. 基于储能物理约束的虚拟同步机运行边界研究[J]. 中国电机工程学报, 2017, 37(2): 506-516.
YUAN C, LIU C, ZHAO T Y, et al. Research on operating boundary of virtual synchronous machine based on physical constraint of energy storage system[J]. Proceedings of the CSEE, 2017, 37(2): 506-516.
[20] 温烨婷, 戴瑜兴, 毕大强, 等. 一种电网友好型光储分布式电源控制策略[J]. 中国电机工程学报, 2017, 37(2): 464-476.
WEN Y T, DAI Y X, BI D Q, et al. A grid friendly PV/BESS distributed generation control strategy[J]. Proceedings of the CSEE, 2017, 37(2): 464-476.
[21] 孟建辉, 彭嘉琳, 王毅, 等. 多约束下光储系统的灵活虚拟惯性控制方法[J]. 电工技术学报, 2019, 34(14): 3046-3058.
MENG J H, PENG J L, WANG Y, et al. Multi-constrained flexible virtual inertial control method for photovoltaic energy storage system[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3046-3058.
[22] 张福民, 白松, 李占凯, 等. 基于VSG技术的微电网储能荷电状态控制策略[J]. 电网技术, 2019, 43(6): 2109-2116.
ZHANG F M, BAI S, LI Z K, et al. Control strategy for microgrid storage system’s state of charge based on virtual synchronous generator[J]. Power system technology, 2019, 43(6): 2109-2116.
[23] 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-150.
GAO J R, LI G J, WANG K Y, et al. Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of electric power systems, 2020, 44(4): 134-150.
[24] 田铭兴, 路涛涛, 贾志博, 等. 基于虚拟同步发电机控制的光/储/燃料电池微电网能量管理[J]. 电力自动化设备, 2019, 39(5): 89-95.
TIAN M X, LU T T, JIA Z B, et al. Energy management of photovoltaic-storage-fuel cell microgrid based on virtual synchronous generator control[J]. Electric power automation equipment, 2019, 39(5): 89-95.
[25] 殷桂梁, 董浩, 代亚超, 等. 光伏微网中虚拟同步发电机参数自适应控制策略[J]. 电网技术, 2020, 44(1): 192-199.
YIN G L, DONG H, DAI Y C, et al. Adaptive control strategy of VSG parameters in photovoltaic microgrid[J]. Power system technology, 2020, 44(1): 192-199.

基金

国家自然科学基金(51877186); 电网安全与节能国家重点实验室(中国电力科学研究院有限公司)开放基金(DZB51201901101)

PDF(2164 KB)

Accesses

Citation

Detail

段落导航
相关文章

/