[1] 娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40(7): 30-35. LOU S H, YANG T M, WU Y W, et al.Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J]. Automation of electric power systems, 2016, 40(7): 30-35. [2] 娄素华, 吴耀武, 崔艳昭, 等. 电池储能平抑短期风电功率波动运行策略[J]. 电力系统自动化, 2014, 38(2): 17-22, 58. LOU S H, WU Y W, CUI Y Z, et al.Operation strategy of battery energy storage system for smoothing short-term wind power fluctuation[J]. Automation of electric power systems, 2014, 38(2): 17-22, 58. [3] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(8): 2251-2257. HU Z C, XIA R, WU L L, et al.Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J]. Power system technology, 2016, 40(8): 2251-2257. [4] 赵爱云, 陈宽. 储能电池参与风电调频控制策略[J]. 通信电源技术, 2018, 35(7): 29, 214. ZHAO A Y, CHEN K. Control strategy of energy storage battery participating in wind power frequency regulation[J]. Telecom power technology, 2018, 35(7): 29, 214. [5] SAVKIN A V, KHALID M, AGELIDIS V G.A constrained monotonic charging/discharging strategy for optimal capacity of battery energy storage supporting wind farms[J]. IEEE transactions on sustainable energy, 2016, 7(3): 1224-1231. [6] 吴玮坪, 胡泽春, 宋永华. 结合随机规划和序贯蒙特卡洛模拟的风电场储能优化配置方法[J]. 电网技术, 2018, 42(4): 1055-1062. WU W P, HU Z C, SONG Y H.Optimal sizing of energy storage system for wind farms combining stochastic programming and sequential Monte Carlo simulation[J]. Power system technology, 2018, 42(4): 1055-1062. [7] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于风电功率预测误差分析的风电场储能容量优化方法[J]. 电力系统自动化, 2014, 38(16): 28-34. YE R L, GUO Z Z, LIU R Y, et al.A method for designing optimal energy storage system based on analysis of wind power forecast error[J]. Automation of electric power systems, 2014, 38(16): 28-34. [8] 吴杰, 丁明, 张晶晶. 基于云模型和k-means聚类的风电场储能容量优化配置方法[J]. 电力系统自动化, 2018, 42(24): 67-76. WU J, DING M, ZHANG J J.Capacity configuration method of energy storage system for wind farm based on cloud model and k-means clustering[J]. Automation of electric power systems, 2018, 42(24): 67-76. [9] 韩涛, 卢继平, 乔梁, 等. 大型并网风电场储能容量优化方案[J]. 电网技术, 2010, 34(1): 169-173. HAN T, LU J P, QIAO L, et al.Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm[J]. Power system technology, 2010, 34(1): 169-173. [10] 王娜, 任燕燕. 基于固定效应面板数据的Copula分位数回归及模拟[J]. 统计与决策, 2019, 35(19): 82-86. WANG N, REN Y Y.Using Copula quantile regression with panel data[J]. Statistics & decision, 2019, 35(19): 82-86. [11] 季峰, 蔡兴国, 王俊. 基于混合Copula函数的风电功率相关性分析[J]. 电力系统自动化, 2014, 38(2): 1-5,32. JI F, CAI X G, WANG J.Wind power correlation analysis based on hybrid copula[J]. Automation of electric power systems, 2014, 38(2): 1-5, 32. [12] 王娜. 面板数据分位数回归模型求解及应用研究[D]. 济南: 山东大学, 2017. WANG N.Research on solving and applying of quantile regression for panel data[D]. Ji’nan: Shandong University, 2017. [13] 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11): 1-6. WU J H, SHAO Z G, YANG S H, et al.Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical engineering, 2020, 21(11): 1-6. [14] 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39(3): 75-81. MEI J, ZHANG J, LIU S Y, et al.Development status of battery energy storage technology[J]. Zhejiang electric power, 2020, 39(3): 75-81. |