[1] 赵悦, 练冲, 练继建, 等. 海上风电筒型结构基础层状地基参数优化反演[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(4): 423-429. ZHAO Y, LIAN C, LIAN J J, et al.Optimization inversion of multi-layer subsoil parameters for offshore wind turbine structure supported by bucket foundation[J]. Journal of Tianjin University(science and technology), 2019, 52(4): 423-429. [2] 祁越, 刘润, 练继建. 无黏性土中筒型基础负压下沉模型试验[J]. 岩土力学, 2018, 39(1): 139-150. QI Y, LIU R, LIAN J J.Model test of bucket foundation suction installation in cohesionless soil[J]. Rock and soil mechanics, 2018, 39(1): 139-150. [3] 练继建, 陈飞, 杨旭, 等. 海上风机复合筒型基础负压沉放调平[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 987-993. LIAN J J, CHEN F, YANG X, et al.Suction installation and leveling of composite bucket foundation for offshore wind turbines[J]. Journal of Tianjin University(science and technology), 2014, 47(11): 987-993. [4] 孙宇. 外压载荷下复合材料圆柱壳的缺陷敏感性研究[D]. 大连: 大连理工大学, 2017. SUN Y.Imperfection sensitivity of composite cylindrical shell under external pressure[D]. Dalian: Dalian University of Technology, 2017. [5] BAKMAR C L, AHLE K, NIELSEN S A, et al.The monopod bucket foundation: recent experiences and challenges ahead[C]//European Offshore Wind Conference & Exhibition, Stockholm, Sweden, 2009. [6] MADSEN S, ANDERSEN L V, IBSEN L B.Numerical buckling analysis of large suction caissons for wind turbines on deep water[J]. Engineering structures, 2013, 57: 443-452. [7] GB 50884—2013, 钢筒仓技术规范(附条文说明)[S]. GB 50884—2013, Technical specification for steel silos (with clauses)[S]. [8] EN1993-1-6-2007, Eurocode 3: design of steel structures(Part 1-6): strength and stability of shell structures[S]. [9] 韩庆华, 金辉, 艾军, 等. 工程结构整体屈曲的临界荷载分析[J]. 天津大学学报, 2005, 38(12): 1051-1057. HAN Q H, JIN H, AI J, et al.Analysis of the overall buckling load for engineering structures[J]. Journal of Tianjin University, 2005, 38(12): 1051-1057. [10] 张翀, 舒赣平. 轴压和均匀内压下钢筒仓圆柱壳屈曲承载力研究[J]. 特种结构, 2015, 32(4): 1-7. ZHANG C, SHU G P.Bearing capacity axial pressure and pressure uniformity within the cylindrical shell of steel silo buckling[J]. Special structures, 2015, 32(4): 1-7. [11] 唐敢. 板片空间结构缺陷稳定分析及试验研究[D]. 南京: 东南大学, 2005. TANG G.Theoretical and experimental research on the stability of the sheet-space structure with imperfections [D]. Nanjing: Southeast University, 2005. [12] 李朋波. 薄壁加筋圆柱壳静动力屈曲特性数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. LI P B.Numerical simulation and experimental research on the static and dynamic buckling characteristics of thin-walled stiffened cylindrical shell[D]. Harbin: Harbin Engineering University, 2017. [13] 韩庆华, 赵秋红, 芦燕. 钢结构稳定性[M]. 武汉: 武汉大学出版社, 2014: 40-41. HAN Q H, ZHAO Q H, LU Y.Stability of steel structure [M]. Wuhan: Wuhan University Press, 2014: 40-41. [14] 沈世钊. 网壳结构的稳定性[J]. 土木工程学报, 1999(6): 11-19, 25. SHEN S Z.Stability of latticed shells[J]. China civil engineering journal, 1999(6): 11-19, 25. [15] 万福腾. 纵向加筋薄壁圆柱壳轴压屈曲稳定性研究[D]. 杭州: 浙江大学, 2017. WAN F T.Research on buckling analysis of stringer-stiffened thin-walled cylindrical shell under axial load[D]. Hangzhou: Zhejiang University, 2017. [16] SONG C Y, TENG J G, ROTTER M J.Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression[J]. International journal of solids and structures, 2004, 41(24): 7155-7180. [17] 叶军, 赵阳, 俞激. 初始几何缺陷对仓壁柱承钢筒仓稳定性能的影响[J]. 工程力学, 2006(12): 100-105. YE J, ZHAO Y, YU J.The effect of initial geometric imperfections on stability behavior of column-supported steel silos with engaged columns[J]. Engineering mechanics, 2006(12): 100-105. [18] 陈志平, 唐小雨, 苏文强, 等. 薄壁圆柱壳轴压屈曲研究技术进展[C]//压力容器先进技术—第九届全国压力容器学术会议, 中国合肥, 2017. CHEN Z P, TANG X Y, SU W Q, et al.Research progress in buckling of thin-walled cylindrical shell under axial compression[C]//Advanced Technology of Pressure Vessels-Proceedings of the Ninth National Conference, Hefei, China, 2017. [19] 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展[J]. 力学季刊, 2018, 39(2): 223-236. QIAO P Z, WANG Y L, LU L J.Advances in stability study of cylindrical shells[J]. Chinese quarterly of mechanics, 2018, 39(2): 223-236. |