风电叶片低粗糙敏感性厚翼型优化方法研究

李星星, 李成良, 毛晓娥, 陈淳

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 395-401.

PDF(1593 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1593 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 395-401. DOI: 10.19912/j.0254-0096.tynxb.2020-1093

风电叶片低粗糙敏感性厚翼型优化方法研究

  • 李星星, 李成良, 毛晓娥, 陈淳
作者信息 +

OPTIMIZATION METHOD OF THICK WIND TURBINE AIRFOILS WITH LOW SENSITIVITY TO SURFACE ROUGHNESS

  • Li Xingxing, Li Chengliang, Mao Xiaoe, Chen Chun
Author information +
文章历史 +

摘要

基于叶片设计需求,将厚翼型设计点性能随前缘粗糙的敏感性参数化并引入到厚翼型设计中,改进其优化模型;结合翼型几何设计、性能分析以及最优化算法建立厚翼型低粗糙敏感性优化设计方法。通过35%相对厚度翼型案例设计,验证了该方法在实现光滑表面下高气动性能的同时,可有效降低粗糙表面下的性能损失。

Abstract

According to the blade design requirements, this study considers the stability of the airfoil design performance to the leading-edge roughness and proposes specific indicators to represent its sensitivity, and then improves the optimization model of the thick wind turbine airfoils with low sensitivity to leading-edge surface roughness. Integrated with the airfoil geometrical design method, performance calculation method and the optimization algorithm, an optimization design method to reduce the aerodynamic performance sensitivity to surface roughness is established. A case design of a 35-percent relative thickness airfoil is performed and the results show that the newly proposed method can improve the airfoil design performance under clean surface condition and effectively decrease the loss in the airfoil performance of leading-edge surface roughness.

关键词

风电叶片 / 翼型 / 敏感性 / 表面粗糙 / 优化设计

Key words

wind turbine blades / airfoils / sensitivity / surface roughness / optimization design

引用本文

导出引用
李星星, 李成良, 毛晓娥, 陈淳. 风电叶片低粗糙敏感性厚翼型优化方法研究[J]. 太阳能学报. 2022, 43(7): 395-401 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1093
Li Xingxing, Li Chengliang, Mao Xiaoe, Chen Chun. OPTIMIZATION METHOD OF THICK WIND TURBINE AIRFOILS WITH LOW SENSITIVITY TO SURFACE ROUGHNESS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 395-401 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1093
中图分类号: TK513.5   

参考文献

[1] SCHUBEL P J, CROSSLEY R J.Wind turbine blade design[J]. Energies, 2012, 5(9): 3425-3449.
[2] ROBINSON M, VEERS P S.U.S. National laboratory research supporting low wind speed technology[J]. Journal of solar energy engineering, transactions of the ASME, 2002, 124(4): 458-460.
[3] GRASSO F, CEYHAN O.Usage of advanced thick airfoils for the outer part of very large offshore turbines[J]. Journal of physics conference, 2014, 524: 012030.
[4] 李德顺, 王成泽, 李银然, 等. 风沙环境下风力机叶片冲蚀磨损的数值研究[J]. 太阳能学报, 2018, 39(3): 627-632.
LI D S, WANG C Z, LI Y R, et al.Numerical simulation of wind turbine blade erosion in sandy environment[J]. Acta energiae solaris sinica, 2018, 39(3): 627-632.
[5] LI X X, YANG K, BAI J Y, et al.A method to evaluate the overall performance of the CAS-W1 airfoils for wind turbines[J]. Journal of renewable and sustainable energy, 2013, 5(6): 063118.
[6] 黄宸武, 杨科, 刘强, 等. CAS风力机叶片外侧翼型粗糙敏感性分析与优化[J]. 太阳能学报, 2013, 34(4): 562-567.
HUANG C W, YANG K, LIU Q, et al.Roughness sensitivity analysis and optimization of CAS airfoils used at outboard section of wind turbine blade[J]. Acta energiae solaris sinica, 2013, 34(4): 562-567.
[7] TIMMER W A, VAN R R.Summary of the Delft University wind turbine dedicated airfoils[J]. Journal of solar energy engineering , 2003, 125(4): 488-496.
[8] GRASSO F. ECN airfoils for large offshore wind turbines design and wind tunnel testing[J/OL]. Wind energy, 2017. https://www.researchgate.net/publication/282374531
_ECN-G1-21_airfoil_Design_and_wind_ tunnel_testing.
[9] LI X X, YANG K, LIAO C C, et al.Overall design optimization of dedicated outboard airfoils for horizontal axis wind turbine blades[J]. Wind energy, 2018, 21(5): 320-337.
[10] DRELA M.XFOIL:an analysis and design system for low Reynolds number airfoils[M]. Berlin, Heidelberg: Springer, Low Reynolds Number Aerodynamics, 1989: 1-12.
[11] VAN-ROOIJ R P J O M. Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction[R]. Report IW-96087R TU-Delft, Netherlands, 1996.
[12] BROOKS T F, POPE D S, MARCOLINI M A.Airfoil self-noise and prediction[R]. Project: RTOP 505-63-51-06, NASA Reference Publication 1218, 1989.
[13] CHENG J, ZHU W J, FISCHER A, et al.Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils[J]. Wind energy, 2014, 17(12): 1817-1833.

基金

国家自然科学基金青年基金项目(51706229); 国家重点研发计划(2018YFB1501204)

PDF(1593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/