热辅助光诱导衰减(LeTID)作为一种不可忽视的太阳电池效率衰减现象,其衰减机制和相关缺陷形态的演变过程亟需澄清。针对p型多晶硅钝化发射极局域接触(PERC)太阳电池,研究在不同光照强度下的衰减规律,光照促进了衰减-再生反应的进行,衰减程度随光照强度减小而增大。对衰减起主导作用的是由LeTID过程中产生的体内深能级缺陷导致的SRH复合,该缺陷中心的电子与空穴俘获截面之比k值在33~37范围内,而对衰减影响较小的浅能级缺陷可能是k值在0.1~1.0之间的Fe—B复合物。
Abstract
Light and elevated temperature degradation (LeTID) is a non-negligible phenomenon of efficiency degradation in silicon solar cell. However, the exact mechanism of the degradation and the evolution process of related defect still need to be clarified. In this paper, we analyzed the evolution of degradation and regeneration under different light intensity in p-type multi-crystalline silicon passivated emitter and rear contact (PERC) solar cell. It shows that illumination accelerates the degradation and the regeneration reaction, but the decrease in light intensity improves the degradation degree. The result shows that there are two main defects inducing SRH (Shockley-Read-Hall) recombination in the bulk of silicon during the degradation-regeneration cycle. The deep level defect dominants SRH recombination in the bulk with ratio of electron to hole capture cross-sections k in the range of 33<k<37, and the shallow level defect with less influence during the whole cycle may be Fe—B complex with k value between 0.1 and 1.
关键词
太阳电池 /
多晶硅 /
衰减 /
载流子寿命 /
光诱导衰减 /
PERC
Key words
solar cells /
polycrystalline silicon /
degradation /
carrier lifetime /
light and elevated temperature degradation (LeTID) /
PERC
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KERSTEN F, ENGELHART P, PLOIGT H C, et al.Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature[J]. Solar energy materials and solar cells, 2015, 142: 83-86.
[2] FERTIG F, LANTZSCH R, MOHR A, et al.Mass production of p-type Cz silicon solar cells approaching average stable conversion efficiencies of 22%[J]. Energy procedia, 2017, 124: 338-345.
[3] ZHOU C L, JI F X, CHENG S Z, et al.Light and elevated temperature induced degradation in B—Ga co-doped cast mono Si PERC solar cells[J]. Solar energy materials and solar cells, 2020, 211: 110508.
[4] SIO H C, WANG H T, WANG Q Z, et al.Light and elevated temperature induced degradation in p-type and n-type cast-grown multicrystalline and mono-like silicon[J]. Solar energy materials and solar cells, 2018, 182: 98-104.
[5] SEN C, CHAN C, HAMER P, et al.Eliminating light-and elevated temperature-induced degradation in p-type PERC solar cells by a two-step thermal process[J]. Solar energy materials and solar cells, 2020, 209: 110470.
[6] CHEN D, HAMER P G, KIM M, et al.Hydrogen-induced degradation: Explaining the mechanism behind light-and elevated temperature-induced degradation in n-and p-type silicon[J]. Solar energy materials and solar cells, 2020, 207: 110353.
[7] VARGAS C, ZHU Y, COLETTI G, et al.Recombination parameters of lifetime-limiting carrier-induced defects in multicrystalline silicon for solar cells[J]. Applied physics letters, 2017, 110(9): 092106.
[8] LEE S H, BHOPAL M F, LEE D W, et al.Review of advanced hydrogen passivation for high efficient crystalline silicon solar cells[J]. Materials science in semiconductor processing, 2018, 79: 66-73.
[9] LNGLESE A, LINDROOS J, VAHLMAN H, et al.Recombination activity of light-activated copper defects in p-type silicon studied by injection-and temperature-dependent lifetime spectroscopy[J]. Journal of applied physics, 2016, 120(12): 125703-122178.
[10] FUNG T H, KIM M, CHEN D, et al.Influence of bound hydrogen states on carrier-induced degradation in multi-crystalline silicon[J]. AIP conference proceedings, 2018, 1999(1): 130004.
[11] JAKOB F, ANNIKA Z, DANIEL S, et al.Impact of temperature and doping on LETID and regeneration in mc-Si[C] // 33rd European Photovoltaic Solar Energy Conference and Exhibition: EU PVSEC,Amsterdam,Netherlands, 2017: 569-572.
[12] 曾湘安,艾斌,邓幼俊,等. 硅片不同表面钝化工艺的稳定性研究[J]. 中山大学学报, 2014, 53(3): 14-18.
ZENG X A, AI B, DENG Y J, et al.Study on the stability of the silicon wafers passivated by different surface passivation processes[J]. Journal of Sun Yat-sen University, 2014, 53(3): 14-18.
[13] MURPHY J D, BOTHE K, KRAIN R, et al.Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of shockley-read-hall statistics: An application to oxide precipitates in silicon[J]. Journal of applied physics, 2012, 111(11): 113709.
[14] GREEN M A.Intrinsic concentration, effective densities of states, and effective mass in silicon[J]. Journal of applied physics, 1990, 67(6): 2944-2954.
[15] MORISHIGE A E, JENSEN M A, NEEDLEMAN D B, et al.Lifetime spectroscopy investigation of light-induced degradation in p-type multicrystalline silicon PERC[J]. IEEE journal of photovoltaics, 2016, 6(6): 1466-1472.
[16] REIN S, GLUNZ S W.Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy[J]. Journal of applied physics, 2005, 98(11): 113711.
[17] FUNG T H, KIM M, CHEN D, et al.A four-state kinetic model for the carrier-induced degradation in multicrystalline silicon: Introducing the reservoir state[J]. Solar energy materials and solar cells, 2018, 184: 48-56.
[18] ZUNDEL T, WEBER J.Boron reactivation kinetics in hydrogenated silicon after annealing in the dark or under illumination[J]. Physical review B, 1991, 43(5): 4361.
[19] LEONARD S, MARKEVICH P, PEAKER A R, et al.Evidence for an iron-hydrogen complex in p-type silicon[J]. Applied physics letters, 2015, 107(3): 032103.
基金
国家重点研发计划(2018YFB1500303)