千瓦级小型液压式波浪能装置能量转换系统研究

陈坤鑫, 盛松伟, 姜家强, 王坤林, 叶寅, 张亚群

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 471-476.

PDF(2163 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2163 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 471-476. DOI: 10.19912/j.0254-0096.tynxb.2020-1107

千瓦级小型液压式波浪能装置能量转换系统研究

  • 陈坤鑫, 盛松伟, 姜家强, 王坤林, 叶寅, 张亚群
作者信息 +

RESEARCH ON ENERGY CONVERSION SYSTEM OF KILOWATT SMALL HYDRAULIC WAVE ENERGY DEVICE

  • Chen Kunxin, Sheng Songwei, Jiang Jiaqiang, Wang Kunlin, Ye Yin, Zhang Yaqun
Author information +
文章历史 +

摘要

针对小型海洋观测仪器用电需求,研究高效、可靠的小型液压式波浪能装置能量转换系统。在实验室建立一套3 kW的液压式波浪能能量转换系统,进行不同电阻负载、不同蓄能体积以及不同控制策略的液压系统试验,获得PTO效率曲线及各发电过程的特性曲线,详细分析不同控制策略的能量转换特性,得到PTO效率随阻值的增大趋于平稳、蓄能体积基本不影响PTO转换效率的结论,验证有蓄能器无控制器型直冲式能量转换系统的可行性。

Abstract

For the electricity demand of small ocean observation instruments, an efficient and reliable energy conversion system of small hydraulic wave energy device is studied. A set of 3 kW hydraulic wave energy conversion system is established in the laboratory. Hydraulic system tests with different resistance, different energy storage volumes and different control strategies are carried out to obtain the PTO efficiency curve and the characteristic curve of each power generation process, to analyze the energy conversion characteristics of the different control strategies in detail. It is concluded that the PTO efficiency tends to be stable with the increase of resistance and the energy storage volume has no effects on the conversion efficiency of PTO. The feasibility of the direct impact energy conversion system with accumulator and without controller is verified.

关键词

波浪能 / 能量转换 / 转换效率 / 蓄能系统 / 液压式

Key words

wave power / energy conversion / conversion efficiency / energy storage system / hydraulic

引用本文

导出引用
陈坤鑫, 盛松伟, 姜家强, 王坤林, 叶寅, 张亚群. 千瓦级小型液压式波浪能装置能量转换系统研究[J]. 太阳能学报. 2022, 43(7): 471-476 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1107
Chen Kunxin, Sheng Songwei, Jiang Jiaqiang, Wang Kunlin, Ye Yin, Zhang Yaqun. RESEARCH ON ENERGY CONVERSION SYSTEM OF KILOWATT SMALL HYDRAULIC WAVE ENERGY DEVICE[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 471-476 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1107
中图分类号: P743.2   

参考文献

[1] WANG Z F, DUAN C L, DONG S.Long-term wind and wave energy resource assessment in the South China sea based on 30-year hindcast data[J]. Ocean engineering, 2018, 163: 58-75.
[2] SALTER S.Wave power[J]. Nature, 1974, 249: 720-724.
[3] DALTON G J, ALCORN R, LEWIS T.Case study feasibility analysis of the Pelamis wave energy convertor in Irelan, Portugal and North Americal[J]. Renewable energy, 2010, 35(2): 443-455.
[4] HENDERSON R.Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable energy, 2006, 31(2): 271-283.
[5] 李永国, 汪振, 王世明, 等. 国外波浪能开发利用技术进展[J]. 工程研究-跨学科视野中的工程, 2014, 6(4): 371-382.
LI Y G, WANG Z, WANG S M, et al.Progress in the development and utilization of wave energy technology abroad[J]. Journal of engineering studies, 2014, 6(4): 371-382.
[6] 訾丹丹. 直驱式浪流发电装置结构设计[D]. 上海: 上海海洋大学, 2018.
ZI D D.Structure design of direct drive wave-current power generation[D]. Shanghai: Shanghai Ocean University, 2018.
[7] 中国科学院广州能源研究所. “南海兆瓦级波浪能示范工程建设”项目首台500 kW鹰式波浪能发电装置“舟山号”正式交付[EB/OL]. http://www.giec.cas.cn/ttxw2016/202007/t20200701_5614043.html, 2020-07-01/2020-10-13.
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. Zhou Shan, the first 500 kW Sharp Eagle wave energy power generation device of the South China Sea megawatt wave energy demonstration project, was officially delivered[EB/OL]. http://www.giec.cas.cn/ttxw2016/202007/t20200701_5614043.html, 2020-07-01/2020-10-13.
[8] 任方言. 波浪能发电模拟试验台设计及发电实验系统研究[D]. 济南: 山东大学, 2020.
REN F Y.The design of wave energy simulation power generation test bench and the research of power generation experimental system[D]. Ji’nan: Shangdong University, 2020.
[9] 盛松伟, 张亚群, 王坤林, 等. 鹰式波浪能发电装置发电系统研究[J]. 可再生能源, 2015, 33(9): 1422-1426.
SHENG S W, ZHANG Y Q, WANG K L, et al.Experiment research on the power generation system of the Sharp Eagle wave energy converter[J]. Renewable energy resources, 2015, 33(9): 1422-1426.
[10] 蔡廷文. 液压系统现代建模方法[M]. 北京: 中国标准出版社, 2004.
CAI T W.Modern modeling method for hydraulic system[M]. Beijing: Standards Press of China, 2012.

基金

国家重点研发计划(2019YFB1504402); 中国科学战略性先导科技专项(XDA13040202); 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0107); 广东省海洋经济发展(海洋六大产业)专项资金项目(粤自然资合[2020]022号)

PDF(2163 KB)

Accesses

Citation

Detail

段落导航
相关文章

/