针对在进行应变感知时光纤感知到的应变和叶片基体实际应变会存在一定偏差(即应变感知传递偏差)的问题,开展基于光纤传感的风电叶片应变感知传递特性研究,以建立应变传递分析模型。首先确定光纤光栅应变传感器布置策略,然后利用理论和数值仿真相结合分析载荷、光纤(纤芯)直径、包层(传感结构参数)、粘接剂厚度、光纤相对基体位置、叶片材料属性参数等对应变变化及其传递特征的影响,分别考虑表面粘贴式和嵌入式2种布置模式。最后,基于多因素的正交试验分析,通过回归分析建立光纤感知应变(传递值)与传感结构参数、光纤相对基体位置、材料属性之间的关系表达式。研究结果表明:随着光纤传感器植入深度的增加,应变传递大小以中性层为对称面对称分布;轴向杨氏模量E1、轴向和横向构成法平面内的剪切模量G12、轴向和纵向构成法平面内的剪切模量G31对2种布置形式的应变传递都有明显影响。
Abstract
Aiming at the problem that there will be a certain deviation (i.e. strain sensing transmission deviation) between the strain sensed by the optical fiber and the actual strain of the blade matrix during strain sensing, the strain sensing transmission characteristics of wind power blades based on optical fiber sensing are studied to establish the strain transmission analysis model. Firstly, the arrangement strategy of fiber bragg grating strain sensor is determined. Then, the effects of load, fiber (core) diameter, cladding thickness, adhesive thickness, relative position of optical fiber to blade matrix, blade material parameters on the strain and its transfer characteristics are analysed. Two layout modes, surface-attached and embedded, are considered respectively. Finally, based on the orthogonal experimental analysis of multiple factors, the relationship expression between optical fiber sensing strain (transmission value) and sensing structure parameters, optical fiber relative matrix position and material properties is established through regression analysis. The results show that the strain transfer is distributed symmetrically on the neutral layer with the increase of the embedded depth of optical fiber sensor. Young’s ModulusE1, Shear ModulusG12and Shear modulusG31have obvious effects on the strain transfer of both the two layout modes.
关键词
风电机组 /
叶片 /
应变测试 /
回归分析 /
光纤传感器
Key words
wind turbines /
blades /
strain measurement /
regression analysis /
optical fiber sensors
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王超, 戴巨川, 杨鑫, 等. 基于“应变-载荷”模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报, 2019, 40(5): 1423-1432.
WANG C, DAI J C, YANG X, et al.Research on blade load identification of large-scale wind turbines based on “stress-load” model[J]. Acta energiae solaris sinica, 2019, 40(5): 1423-1432.
[2] 付德义, 秦世耀, 薛扬, 等. 叶片变桨速率对风电机组停机过程载荷特性影响研究[J]. 太阳能学报, 2018, 39(6): 1761-1767.
FU D Y, QIN S Y, XUE Y, et al.Effect of blade pitch rate on load characteristics of wind turbines during stop procedure[J]. Acta energiae solaris sinica, 2018, 39(6): 1761-1767.
[3] 付德义, 薛扬, 边伟, 等. 风切变指数对于风电机组载荷特性影响研究[J]. 太阳能学报, 2018, 39(5): 1380-1387.
FU D Y, XUE Y, BIAN W, et al.Effects of wind shear exponents on wind turbine load characteristics[J]. Acta energiae solaris sinica, 2018, 39(5): 1380-1387.
[4] 杨小川, 孟德虹, 王运涛, 等. 高尖速比下风力机塔影效应及叶片载荷特性研究[J]. 中国电机工程学报, 2018, 38(9): 2649-2656.
YANG X C, MENG D H, WANG Y T, et al.Research on wind turbine with/without tower and load characteristic of blade at high tip-speed ratio[J]. Proceedings of the CSEE, 2018, 38(9): 2649-2656.
[5] FERNANDEZ G, USABIAGA H, VANDEPITTE D.An efficient procedure for the calculation of the stress distribution in a wind turbine blade under aerodynamic loads[J]. Journal of wind engineering and industrial aerodynamics, 2018, 172: 42-54.
[6] ULLAH H, ULLAH B, SILBERSCHMIDT V V.Structural integrity analysis and damage assessment of a long composite wind turbine blade under extreme loading[J]. Composite structures, 2020, 246: 112426.
[7] ZHANG L A, GUO Y Z, WANG J H, et al.Structural failure test of a 52.5 m wind turbine blade under combined loading[J]. Engineering failure analysis, 2019, 103: 286-293.
[8] WEN B R, TIAN X L, JIANG Z H, et al.Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: a feasibility study[J]. Marine structures, 2020, 71: 102729.
[9] SCHRORDER K, ECKE W, APITZ J, et al.A fiber Bragg grating sensor system monitors operational load in a wind turbine rotor blade[J]. Measurement science and technology, 2006, 17: 1167-1172.
[10] 冷劲松, 王殿富, 杜善义. 光纤传感器对机敏复合材料结构性能的影响[J]. 实验力学, 1995(4): 309-315.
LENG J S, WANG D F, DU S Y.The influence of optical fiber sensors for propeties of smart composite astruetures[J]. Journal of experimental mechanics, 1995(4): 309-315.
[11] 周学良. 胶粘剂[M]. 北京: 化学工业出版社, 2002.
ZHOU X L.Adhesive[M]. Beijing: Chemical Industry Press,2002.
[12] DIMITROV N, BITSCHE R D, BLASQUES J P.Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading[J]. Structural safety, 2017, 66: 27-37.
基金
国家自然科学基金(51675175; 51975535)