为了研究行波电帘清除光伏组件表面微尘的机理,提出一种基于COMSOL多物理场仿真软件的电帘除尘建模方法,建立三相行波电帘与带电微尘颗粒相耦合的动力学模型。研究不同电极、电源参数和环境因素下微尘颗粒的运动,首次分析电极形状对电场分布和场强的影响。结果表明,三相行波电帘能有效实现尘埃的定向输运,带正电微尘颗粒会以跳跃、帘状或冲浪模式沿行波传播方向移除电帘,但微尘颗粒的运动模式及除尘效率受多种因素影响。
Abstract
In order to investigate the mechanism of dust particles on the surface of a solar cell panel removed by the traveling-wave electric curtain, a numerical modelling approach for the dust removal using the electric curtain technology was presented based on the COMSOL Multiphysics simulation software. The dynamics model for the coupling between the three-phase traveling-wave electric curtain and the charged dust particles was established. The motion of dust particles in various cases of electrode, power, and environment parameters was studied. The influences of electrode shapes on distribution and intensity of the electric fields were analyzed for the first time. The results of numerical simulations indicate that the dust particles can be transported directionally by the three-phase traveling-wave electric curtain, and the dust particles with positive charge are removed along the direction of traveling-wave propagation and through hopping, curtain, or surfing modes; however, the motion modes of dust particles and the efficiency of dust removal are dependent on numerous factors.
关键词
光伏组件 /
电动力学 /
除尘 /
行波 /
电帘 /
COMSOL仿真软件
Key words
PV modules /
electrodynamics /
dust removal /
traveling wave /
electric curtain /
COMSOL simulation software
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张杰. 基于行波电场理论的微尘颗粒输运机理与电帘除尘研究[D]. 重庆: 重庆大学, 2018.
ZHANG J.Research on particle transport mechanism and dust mitigation based on traveling-wave electric curtain[D]. Chongqing: Chongqing University, 2018.
[2] 孙旗霞, 杨宁宁, 蔡小兵, 等. 基于交变电场的月表除尘方法研究进展[J]. 力学进展, 2012, 42(6): 785-802.
SUN Q X, YANG N N, CAI X B, et al.Advance in lunar surface dust removal method by electrodynamic field[J]. Advances in mechanics, 2012, 42(6): 785-802.
[3] GAIER J R.The effects of lunar dust on EVA systems during the Apollo missions[R]. NASA/TM-2005-213610, 2005.
[4] MAZUMDER M K, SHARMA R, BIRIS A S, et al.Self-cleaning transparent dust shields for protecting solar panels and other devices[J]. Particulate science and technology, 2007, 25(6): 5-20.
[5] KAWAMOTO H.Electrostatic cleaning device for removing lunar dust adhered to spacesuits[J]. Journal of aerospace engineering, 2011, 25(3): 470-473.
[6] MELCHER J R, WARREN E P, KOTWAL R H.Traveling-wave delivery of single-component developer[J]. IEEE transactions on industry applications, 1989, 25(5): 956-961.
[7] 孙旗霞. 交变电场作用下颗粒物质运动规律研究[D]. 北京: 北京理工大学, 2014.
SUN Q X.Study on motion characteristics of granular medium under alternating electric fields[D]. Beijing: Beijing Institute of Technology, 2014.
[8] TATOM F B, SREPEL R D V, JOHNSON N A, et al. Lunar dust degradation effects and removal prevention concepts[R].NASA-CR-93594, 1967.
[9] MASUDA S, FUJIBAYASHI K, ISHIDA K, et al.Confinement and transportation of charged aerosol clouds via electric curtain[J]. Electrical engineering in Japan, 1972, 92(1): 43-52.
[10] HEMSTREET J M.Velocity distribution on the Masuda panel[J]. Journal of electrostatics, 1985, 17(3): 245-254.
[11] SIMS R A, BIRIS A S, WILSON J D, et al.Development of a transparent self-cleaning dust shield for solar panels[C]//Proceedings of the ESA-IEEE Joint Meeting on Electrostatics, Little Rock, AR, USA, 2003.
[12] 柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 北京: 清华大学, 2011.
LIU G Q.Discrete element methods of fine particle dynamics in presence of van der Waals and electrostatic forces[D]. Beijing: Tsinghua University, 2011.
[13] ZHANG J, ZHOU C, ZHENG F, et al.Experimental and numerical modeling of particle levitation and movement behavior on traveling-wave electric curtain for particle removal[J]. Particulate science and technology, 2019, 37(6): 741-749.
[14] MASUDA S, WASHIZU M, IWADARE M. Separation of small particles suspended in liquid by nonuniform traveling field[J]. IEEE transactions on industry applications, 1987, IA-23(3): 474-480.
[15] WASHIZU M, JONES T B.Multipolar dielectrophoretic force calculation[J]. Journal of electrostatics, 1994, 33(2): 187-198.
[16] FAN L S, ZHU C.Principles of gas-solid flows[M]. Cambrige: Cambridge University Press, 1998.
基金
国家自然科学基金(11702241); 中国航天科技集团科技创新项目(JTKJ2019051001)