以超大型DTU 10 MW单桩式近海风力机为研究对象,通过p-y曲线和非线性弹簧建立桩-土耦合模型,选取Kaimal风谱模型建立湍流风场,基于P-M谱定义不同频率波浪分布,并利用辐射/绕射理论计算波浪载荷,采用有限元方法对不同海况下单桩式风力机进行动力学响应、疲劳及屈曲分析。结果表明:不同海况波浪载荷作用下塔顶位移响应及等效应力峰值远小于风及风浪联合作用,其中风浪联合作用下风力机塔顶位移响应及等效应力略小于风载荷;波浪载荷对风载荷引起的单桩式风力机动力学响应具有一定抑制作用,此外相较于波浪载荷,风载荷为控制载荷;风载荷与风浪联合作用下风力机等效应力峰值位于塔顶与机舱连接处,波浪载荷风力机等效应力峰值位于支撑结构与桩基连接处;仅以风载荷预估风力机塔架疲劳寿命将导致预估不足;随着波浪载荷的增大,风力机失稳风险加大,波浪载荷不可忽略;不同海况下,风浪联合作用局部屈曲区域位于塔架中下端,在风力机抗风浪设计时,应重点关注此处;变桨效应可大幅降低风力机动力学响应、疲劳损伤及发生屈曲的风险。
Abstract
To very large DTU 10 MW monopile offshore wind turbine as the research object, by p-y curve and nonlinear spring pile and soil coupling model is set up, select Kaimal spectrum model wind turbulence wind field, and based on P- M wave spectrum defining different frequency distributions, and radiation/diffraction theory is used to calculate the wave load, using finite element method (FEM) of different sea condition order pile type wind turbine dynamic response, fatigue and buckling analysis. The results show that the displacement response and equivalent stress peak of the tower top under different sea conditions and under wave load are far less than that under combined wind and wind wave action, and the displacement response and equivalent stress of the tower top under combined wind and wind wave action are slightly less than that under wind load. The wave load has a certain inhibitory effect on the wind dynamic mechanical response. In addition, compared with the wave load, the wind load is the control load. Under the combined action of wind load and wind wave, the peak value of equivalent stress of wind turbine is located at the connection between tower top and engine room, while the peak value of equivalent stress of wave load wind turbine is located at the connection between support structure and pile foundation. Only using wind load to estimate the fatigue life of wind turbine tower will lead to underestimation. With the increase of wave load, the risk of wind turbine instability increases, and wave load cannot be ignored. Under different sea conditions, the local buckling region under combined wind and wave action is located at the middle and lower end of the tower, which should be paid more attention to when designing wind turbine against wind waves. The variable paddle effect greatly reduces the risk of wind mechanical response fatigue damage and buckling.
关键词
海上风力机 /
结构分析 /
瞬态动力学响应 /
疲劳分析 /
屈曲分析
Key words
offshore wind turbines /
structural analysis /
transient response /
fatigue analysis /
buckling analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] COSTOYA X, CASTRO M, CARVALHO D, et al.On the suitability of offshore wind energy resource in the United States of America for the 21st century[J]. Applied energy, 2020, 262: 114537.
[2] GAO Z, MOAN T, WAN L, et al.Comparative numerical and experimental study of two combined wind and wave energy concepts[J]. Journal of ocean engineering and science, 2016, 1(1): 36-51.
[3] World Forum Offshore Wind. Global offshore wind report 2019[R]. London: World Forum Offshore Wind, 2020.
[4] 杨阳, 岳敏楠, 李春, 等. 风力机地震动力学研究现状综述[J]. 热能动力工程, 2019, 34(9): 14-23, 56.
YANG Y, YUE M N, LI C, et al.A review on the state-of-the-art of seismic analysis of wind turbines[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 14-23, 56.
[5] MARINO E, GIUSTI A, MANUEL L, et al.Offshore wind turbine fatigue loads: the influence of alternative wave modeling for different turbulent and mean winds[J]. Renewable energy, 2017, 102: 157-169.
[6] 张建平, 龚振, 张智伟. 平均风速对海上风力机塔架动力响应的影响[J]. 上海电力学院学报, 2019, 35(1): 27-30, 52.
ZHANG J P, GONG Z, ZHANG Z W.Influence of average wind speed on dynamic responses of offshore wind turbine tower[J]. Journal of Shanghai University of Electric Power, 2019, 35(1): 27-30, 52.
[7] 张湘伟, 文武. 大型风力机塔架在脉动风下的动力响应特性研究[J]. 四川理工学院学报(自然科学版), 2013, 26(2): 32-35.
ZHANG X W, WEN W.Study on Dynamic response of great wind turbine tower under the fluctuating wind[J]. Journal of Sichuan University of Science & Engineering(natural science edition), 2013, 26(2): 32-35.
[8] VELARDE J, KRAMHØFT C, DALSGAARD J, et al. Fatigue reliability of large monopiles for offshore wind turbines[J]. International journal of fatigue, 2020, 134: 105487.
[9] 李德源, 刘胜祥, 张湘伟. 海上风力机塔架在风波联合作用下的动力响应数值分析[J]. 机械工程学报, 2009, 45(12): 46-52.
LI D Y, LIU S X, ZHANG X W.Dynamical response numerical analysis of the offshore wind turbine tower under combined action of wind and wave[J]. Journal of mechanical engineering, 2009, 45(12): 46-52.
[10] BANERJEE A, CHAKRABORTY T, MATSAGAR V, et al.Dynamic analysis of an offshore wind turbine under random wind and wave excitation with soil-structure interaction and blade tower coupling[J]. Soil dynamics and earthquake engineering, 2019, 125: 105699.
[11] REZAEI R, FROMME P, DUFFOUR P.Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable energy, 2018, 123: 450-459.
[12] VELARDE J, BACHYNSKI E E.Design and fatigue analysis of monopile foundations to support the DTU 10 MW[J]. Energy procedia, 2017, 137: 3-13.
[13] Agbayani N.A technical overview of ASCE/AWEARP 2011: recommended practice for compliance of large land-based wind turbine support structures[R]. Structures Congress, 2014: 1759-1770.
[14] 《海洋石油工程设计指南》编委会. 海洋石油工程FPSO与单点系泊系统设计[M]. 北京: 石油工业出版社, 2009.
Editorial Board of the Design Guide for Offshore Petroleum Engineering. Design of FPSO and single point mooring system in offshore petroleum engineering[M]. Beijing: Petroleum Industry Press, 2009.
[15] IEC. Wind turbines Part 3: design requirements for offshore wind turbines IEC 61400-3[R]. (ed.1) Geneva, Switzerland: International Electrotechnical Commission, 2009.
[16] 严心宽, 陈超核, 樊天慧, 等. 风浪联合作用下5 MW三桩固定式风机动力特性响应[J]. 中国海洋平台, 2020, 35(3): 33-37, 42.
YAN X K, CHEN C H, FAN T H, et al.Dynamic responses of 5 MW tripod fixed offshore wind turbine under wave and wind joint loads[J]. China offshore platform, 2020, 35(3): 33-37, 42.
[17] 李春, 叶舟, 高伟, 等. 现代大型风力机设计原理[M]. 上海: 上海科学技术出版社, 2013.
LI C, YE Z, GAO W, et al.Modern large-scale wind turbine design principle[M]. Shanghai: Shanghai Science and Technology Press, 2013.
[18] 沙胜义. 风波联合作用下海上风力机结构疲劳评估[D]. 哈尔滨: 哈尔滨工程大学, 2012.
SHA S Y.Fatigue assessment of the offshore wind turbine structure under combinated wind and wave loading[D]. Harbin: Harbin Engineering University, 2012.
[19] 吴中旺, 叶舟, 成欣, 等. 极端海况下海上漂浮式风力机张力腿平台动力分析[J]. 水资源与水工程学报, 2015, 26(6): 151-157.
WU Z W, YE Z, CHENG X, et al.Dynamic analysis of tension leg platform of floating wind turbine under extreme sea conditions[J]. Journal of water resources and water engineering, 2015, 26(6): 151-157.
[20] 周龙. 砂土中海上风电超大直径钢管桩桩土相互作用研究[D]. 天津: 天津大学, 2014.
ZHOU L.Research on the interaction between pile and soil of super-large diameter steel pipe piles for offshore wind farm in sand wind farm in sand[D]. Tianjin: Tianjin University, 2014.
[21] 侯倩. 埕岛油田现役导管架海洋平台安全评定技术研究[D]. 青岛: 中国石油大学, 2011.
HOU Q.Safety assessment of jacket offshore platforms[D]. Qingdao: China University of Petroleum, 2011.
[22] 徐医培, 李素有, 吴立言, 等. 结构动态响应的求解方法分析[J]. 机械设计与制造, 2009(6): 12-14.
XU Y P, LI S Y, WU L Y, et al.Analysis about several methods of solving dynamic response of structures[J]. Machinery design & manufacture, 2009(6): 12-14.
[23] CLOUGH R W.Early history of the finite element method from the view point of a pioneer[J]. International journal for numerical methods in engineering, 2004, 60: 283-287.
[24] 寇晓东. ALGOR结构分析高级教程[M]. 北京: 清华大学出版社, 2008.
KOU X D.ALGOR advanced analysis of structural analysis[M]. Beijing: Tsinghua University Press, 2008.
[25] 刘旋. 风电机组塔架有限元分析与结构参数多目标优化[D]. 湘潭: 湖南科技大学, 2013.
LIU X.Finite element analysis and structure parameter multi-objective optimization of the wind turbine tower[D]. Xiangtan: Hunan University of Science and Technology, 2013.
[26] 杜静, 周云鹏, 郭智. 大型水平轴风力发电机组塔筒非线性屈曲分析[J]. 太阳能学报, 2016, 37(12): 3178-3183.
DU J, ZHOU Y P, GUO Z.Nonlinear buckling analysis of tower of large scale horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(12): 3178-3183.
[27] GB/T 18451—2001, 风力机发电机组安全要求[S].
GB/T 18451—2001, Safety requirements for wind turbine generator sets[S].
基金
国家自然科学基金(51976131; 52006148); 上海市“科技创新行动计划”地方院校能力建设项目(19060502200)