全角度陷光的微-纳复合绒面单晶PERC太阳电池

邹帅, 吴成坤, 徐磊, 张晓宏, 苏晓东

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 134-139.

PDF(2094 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2094 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 134-139. DOI: 10.19912/j.0254-0096.tynxb.2020-1121

全角度陷光的微-纳复合绒面单晶PERC太阳电池

  • 邹帅1, 吴成坤1, 徐磊1, 张晓宏2, 苏晓东1
作者信息 +

ALL-ANGLED LIGHT-TRAPPED MICRO-NANO HYBRID TEXTUREDMONO-Si PERC SOLAR CELLS

  • Zou Shuai1, Wu Chengkun1, Xu Lei1, Zhang Xiaohong2, Su Xiaodong1
Author information +
文章历史 +

摘要

采用银金属催化化学腐蚀(Ag-MCCE)技术在碱腐蚀的金字塔微米初级绒面结构上制备均匀的纳米次级绒面结构,并研究银纳米颗粒在微米金字塔表面的附着特性及其对纳米结构均匀性和电池性能的影响。结果表明,通过添加聚乙烯吡咯烷酮(PVP)可改善银纳米颗粒在微米金字塔表面的附着均匀性,制备的纳米结构在微米金字塔结构表面分布均匀,且便于后道SiNx的钝化;制得的单晶PERC电池平均效率达到22.22%,较未改善的对比组提升0.46%;独特的微-纳复合绒面(NOM-texture)可实现单晶太阳电池的全角度陷光,兼顾新型光伏屋顶等光伏建筑一体化(BIPV)场合对电池高转换效率和准全向外观的双重要求。

Abstract

In this work, the nano-scaled structures have been uniformly fabricated on alkali-etched micron-scaled pyramid-structures by Ag metal-catalyzed chemical etching technique. The deposition characteristic of Ag nanoparticles on micron pyramid-structures and its influence on the uniformity of nanostructure were studied, as well as on the performances of the mono-Si PERC (Passivated Emitter and Rear Contact) solar cells. The results show that the distribution uniformity of Ag nanoparticles deposited on the micron pyramid-structures can be improved by using polyvinylpyrrolidone as an additive. The prepared nanostructures are uniformly distributed on the micron pyramid-structures and are easy to be passivated by the subsequent SiNx. The average efficiency of the fabricated mono-Si PERC cells is 22.22%, which is 0.46% higher than that of the control group without the additive. The all-angled light trapping property for silicon solar cells can be realized by forming the unique nano-on-micron texture (NOM-texture), which can meet the requirements of Building Integrated Photovoltaics such as new Solar Roof on the high efficiency and quasi-omnidirectional appearance of the cells.

关键词

单晶硅 / 太阳电池 / 制绒 / 金属催化化学腐蚀 / 聚乙烯吡咯烷酮 / 全角度陷光

Key words

monocrystalline silicon / solar cells / texturing / metal-catalyzed chemical etching / polyvinylpyrrolidone / all-angled light-trapping

引用本文

导出引用
邹帅, 吴成坤, 徐磊, 张晓宏, 苏晓东. 全角度陷光的微-纳复合绒面单晶PERC太阳电池[J]. 太阳能学报. 2022, 43(7): 134-139 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1121
Zou Shuai, Wu Chengkun, Xu Lei, Zhang Xiaohong, Su Xiaodong. ALL-ANGLED LIGHT-TRAPPED MICRO-NANO HYBRID TEXTUREDMONO-Si PERC SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 134-139 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1121
中图分类号: TM914.4+1   

参考文献

[1] ALMUZEL M, GOUDARZNIA T, DANESHI A,et al.Tesla solar roof marketing plan[R]. ETM 555/566, 2018.
[2] 廖承菌, 李学铭, 杨培志, 等. 硅基太阳电池用黑硅材料的研究进展[J]. 太阳能学报, 2012, 33(S): 7-12.
LIAO C Y J, LI X M, YANG P Z, et al. Research progress in black silicon for silicon solar cells[J]. Acta energiae solaris sinica, 2012, 33(S): 7-12.
[3] 潘峰, 张旺, 张荻. 仿生纳米硅结构减反射及陷光性能模拟研究[J]. 光学学报, 2016, 36(5): 0516002.
PAN F, ZHANG W, ZHANG D.Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta optica sinica, 2016, 36(5): 0516002.
[4] HUANG Z P, NADINE G, WERNER P, et al.Metal-assisted chemical etching of silicon: a review[J]. Advance materials, 2011, 23(2): 285-308.
[5] 万霞, 王庆康, 李翔, 等. 纳米线织构的多晶硅太阳电池研究[J]. 太阳能学报, 2015, 36(7): 1567-1572.
WAN X, WANG Q K, LI X, et al.Study of nanowires textured polycrystalline Si solar cell[J]. Acta energiae solaris sinica, 2015, 36(7): 1567-1572.
[6] TOOR F, PAGE M R, BRANZ H M, et al.17.1%-efficient multi-scale-textured black silicon solar cells without dielectric antireflection coating[C]//Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, Washington, USA, 2011.
[7] PENG K Q, LEE S T.Silicon nanowires for photovoltaic solar energy conversion[J]. Advanced materials, 2011, 23(2): 198-215.
[8] ZHONG S H, HUANG Z G, LIN X X, et al.High-efficiency nanostructured silicon solar cells on a large scale realized through the suppression of recombination channels[J]. Advanced materials, 2015, 27(3): 555-561.
[9] 韩长安, 邹帅, 李建江, 等. 高效多晶黑硅电池的产线技术[J]. 太阳能学报, 2013, 34(2): 2164-2169.
HAN C A, ZOU S, LI J J, et al.Study on production line technology of high-efficient black multicrystalline silicon solar cell[J]. Acta energiae solaris sinica, 2013, 34(2): 2164-2169.
[10] YE X Y, ZOU S, CHEN K X, et al.18.45%-efficient multi-crystalline silicon solar cell with nano-scale pseudo-pyramid texture[J]. Advanced function materials, 2014, 24(42): 6708-6716.
[11] WANG P, XIAO S Q, JIA R, et al.18.88%-efficient multi-crystalline silicon solar cells by combining Cu-catalyzed chemical etching and post-treatment process[J]. Solar energy, 2018, 169: 153-158.
[12] CAO F, CHEN K X, ZHANG J J, et al.Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency[J]. Solar energy materials & solar cells, 2015, 141: 132-138.
[13] SHENG J, WANG W, YE Q H, et al.MACE texture optimization for mass production of high-efficiency multi-crystalline cell and module[J]. IEEE journal of photovoltaics, 2019, 9(3): 918-925.
[14] ZOU S, YE X Y, WU C K, et al.Complementary etching behavior of alkali, metal-catalyzed chemical, and post-etching of multicrystalline silicon wafers[J]. Progress in photovoltaics: research and application, 2019, 27(6): 511-519.
[15] ZHUANG Y F, ZHONG S H, XU H Y, et al.Broadband spectral response of diamond wire sawn mc-Si solar cell with omnidirectional performance and improved appearance[J]. Solar energy materials & solar cells, 2018, 179: 372-379.
[16] CHEN K X, ZHA J W, HU F Q, et al.MACE nano-texture process applicable for both single-and multi-crystalline diamond-wire sawn Si solar cells[J]. Solar energy materials & solar cells, 2019, 191: 1-8.
[17] YANG L X, LIU Y P, WANG Y, et al.Optimization of silicon pyramidal emitter by self-selective Ag-assisted chemical etching[J]. RSC advances, 2014, 4(47): 24458-24462.
[18] 易早, 李恺, 牛高, 等. 聚乙烯吡咯烷酮相对分子质量对银纳米结构的影响[J]. 强激光与离子束, 2010, 22(10): 2137-2321.
YI Z, LI K, NIU G, et al.Influence of polyvinylpyrrolidone with different molecular weight on silver nanoconfiguration in polyol process[J]. High power laser and particle beams, 2010, 22(10): 2137-2321.
[19] MALINA D, SOBCZAK-KUPIEC A, WZOREK Z, et al.Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone[J]. Digest journal of nanomaterials and biostructures, 2012, 7(4): 1527-1534.
[20] ZHONG S H, WANG W J, TAN M, et al.Realization of quasi-omnidirectional solar cells with superior electrical performance by all-solution-processed Si nanopyramids[J]. Advanced science, 2017, 4(11): 1700200.

基金

国家自然科学基金(91833303); 江苏省研究生科研创新计划((KYCX19_1967)

PDF(2094 KB)

Accesses

Citation

Detail

段落导航
相关文章

/