太阳能中温闪蒸海水淡化系统产水性能研究

范全海, 季旭, 闫磊磊, 李秋玫, 兰青, 邓佳

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 218-224.

PDF(2062 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2062 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 218-224. DOI: 10.19912/j.0254-0096.tynxb.2020-1122

太阳能中温闪蒸海水淡化系统产水性能研究

  • 范全海1, 季旭1, 闫磊磊2, 李秋玫1, 兰青1, 邓佳1
作者信息 +

FRESH WATER PRODUCTION PERFORMANCE INVESTIGATION ON SOLAR MEDIUM TEMPERATURE FLASH EVAPORATION DESALINATION SYSTEM

  • Fan Quanhai1, Ji Xu1, Yan Leilei2, Li Qiumei1, Lan Qing1, Deng Jia1
Author information +
文章历史 +

摘要

为提高系统产水性能并降低内部结垢,提出一种由非跟踪复合抛物面聚光器加热导热油至100 ℃以上作为供能热源,采用喷雾辅助闪蒸的海水淡化系统。实验研究实际天气中,不同太阳辐照度下进水口温度、进水流量对系统产淡水性能的影响。采用密封压力桶可将进水口温度升至沸点以上,最高可达123 ℃。太阳辐照度波动较大时,进水口温度保持稳定,系统可稳定运行。进水口温度对产水速率影响显著,平均进水口温度从100 ℃升至120 ℃时,产水速率提高47.61%。当进水流量为50 kg/h,压力维持在0.045 MPa时,系统产水速率最大,日累计淡水产量可达11.14 kg/(d·m2),小时效率为81.45%,单级生产率为9.15%。

Abstract

In order to improve the water production performance and reduce the internal fouling, a flash evaporation desalination system with a non-tracking parabolic concentrator to heat the heat transfer oil to over 100 ℃ as an energy supply source and spray assisted flash was developed. The influences of water inlet temperature and flow rate on the fresh water production performance under different solar irradiance were experimentally explored in actual weather. The water inlet temperature can be enhanced above the boiling point (up to 123 ℃) by employing the sealed tank. In experiments, when the solar irradiance fluctuates greatly, the water inlet temperature remains stable and the system can operate stably. The water inlet temperature has a significant influence on the water production. When the average water inlet temperature increases from 100 ℃ to 120 ℃, the water production rate increases by 47.61%. When the water inlet flow rate is 50 kg/h and the pressure is 0.045 MPa, the system has the largest water production rate. The daily cumulative fresh water production reach 11.14 kg/(d·m2), the hourly efficiency is 81.45%, and the single-stage productivity is 9.15%.

关键词

太阳能 / 海水淡化 / 闪蒸 / 中温 / 进水流量 / 淡水产量

Key words

solar energy / desalination / flash evaporation / medium temperature / water inlet flow rate / fresh water production

引用本文

导出引用
范全海, 季旭, 闫磊磊, 李秋玫, 兰青, 邓佳. 太阳能中温闪蒸海水淡化系统产水性能研究[J]. 太阳能学报. 2022, 43(7): 218-224 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1122
Fan Quanhai, Ji Xu, Yan Leilei, Li Qiumei, Lan Qing, Deng Jia. FRESH WATER PRODUCTION PERFORMANCE INVESTIGATION ON SOLAR MEDIUM TEMPERATURE FLASH EVAPORATION DESALINATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 218-224 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1122
中图分类号: TK519   

参考文献

[1] DARWISH M A.Thermal desalination in GCC and possible development[J]. Desalination & water treatment, 2014, 52(1-3): 27-47.
[2] MILLER S, SHEMER H, SEMIAT R.Energy and environmental issues in desalination[J]. Desalination, 2015, 366: 2-8.
[3] ALSADAIE S M, IQBAL M.Generic model control (GMC) in multistage flash (MSF) desalination[J]. Journal of process control, 2016, 44: 92-105.
[4] AL-OTHMAN A, TAWALBEH M, ASSAD M H H, et al. Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: A simulation study in UAE[J]. Desalination, 2018, 443: 237-244.
[5] NIGIM T H, EATON J A.CFD prediction of the flashing processes in a MSF desalination chamber[J]. Desalination, 2017, 420: 258-272.
[6] LEE J G, KIM W S, CHOI J S, et al.Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation[J]. Desalination, 2018, 435: 278-292.
[7] 刘娟, 田军仓. 寒冷地区太阳能减压膜蒸馏RO浓水淡化系统设计与试验[J]. 农业工程学报, 2018, 34(15): 238-245.
LIU J, TIAN J C.Design and experiment on RObrine desalination system by solar vacuum membrane distillation in cold region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 238-245.
[8] 胡俊虎, 郭枭, 杨晓宏, 等. 太阳能膜蒸馏淡化水系统运行优化[J]. 农业工程学报, 2017, 33(6): 171-176.
HU J H, GUO X, YANG X H, et al.Running optimization of solar membrane desalination system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 171-176.
[9] 朱国鹏, 李瑞晨, 侯静, 等. 四效管式降膜蒸发太阳能海水淡化装置性能研究[J]. 太阳能学报, 2020, 41(6): 363-369.
ZHU G P, LI R C, HOU J, et al.Performance research of four-effect tubular falling film evaporation solar desalingtion device[J]. Acta energiae solaris sinica, 2020, 41(6): 363-369.
[10] 常泽辉, 李建业, 李瑞晨, 等. 不凝气体对竖管太阳能海水淡化装置性能的影响[J]. 太阳能学报, 2019, 40(8): 2244-2250.
CHANG Z H, LI J Y, LI R C, et al.Effects of noncondensable gases on performance of vertical tubular solar seawatr desalination device[J]. Acta energiae solaris sinica, 2019, 40(8): 2244-2250.
[11] HEITZER M, STAAT M, REINERS H, et al.Shakedown and ratchetting under tension-torsion loadings: Analysis and experiments[J]. Nuclear engineering and design, 2003, 225(1): 11-26.
[12] 沈维道, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2016: 232-233.
SHEN W D, TONG J G.Engineering thermodynamics[M]. Beijing: Higher Education Press, 2016: 232-233.
[13] 武银兰, 张青兰. 饱和食盐水比热容的测量[J]. 大学物理实验, 2011, 24(5): 32-34.
WU Y L, ZHANG Q L.Mseasuring of specific heart of saturation salt solution[J]. Physical experiment of college, 2011, 24(5): 32-34.
[14] EL-AGOUZ S A, EL-AZIZ G B A, AWAD A. Solar desalination system using spray evaporation[J]. Energy, 2014, 76: 276-283.
[15] CAI B A, WANG Q Q, YIN S T, et al.Energy analysis of spray flash evaporation from superheated upward jets[J]. Applied thermal engineering, 2019, 148: 704-713.
[16] SHARQAWY M H, LIENHARD J H, ZUBAIR S M.Thermophysical properties of seawater: A review of existing correlations and data[J]. Desalination & water treatment, 2010, 16(1-3): 354-380.
[17] ZAMEN M, SOUFARI S M, VAHDAT S A, et al.Experimental investigation of a two-stage solar humidification-dehumidification desalination process[J]. Desalination, 2014, 332(1): 1-6.

基金

国家自然科学基金(51766018); 云南省大学生创新项目(202010681023)

PDF(2062 KB)

Accesses

Citation

Detail

段落导航
相关文章

/