平板型光伏/光热系统高效换热数值模拟研究

张亮, 毕宜鑫, 张高明, 王泽昕, 魏进家

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 159-165.

PDF(2035 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2035 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 159-165. DOI: 10.19912/j.0254-0096.tynxb.2020-1128

平板型光伏/光热系统高效换热数值模拟研究

  • 张亮1, 毕宜鑫1, 张高明2, 王泽昕2, 魏进家1,2
作者信息 +

NUMERICAL INVESTIGATION ON HIGH-EFFICIENCY HEAT TRANSFER OF PLATE PHOTOVOLTAIC/THERMAL SYSTEMS

  • Zhang Liang1, Bi Yixin1, Zhang Gaoming2, Wang Zexin2, Wei Jinjia1,2
Author information +
文章历史 +

摘要

针对光伏/光热(PV/T)系统管板换热结构传热性能差、电池层温度分布不均匀的问题,采用管板连接处增加机械加固的形式强化管板导热接触,同时提出蛇形管、单向螺旋型和双向螺旋形3种换热通道分布结构。通过数值模拟方法对比不同结构的系统热性能,随后在流量、辐照度、入口水温等多工况条件下分析换热性能的变化。结果显示:系统在流量90 L/h、辐照度800 W/m2时呈换热性能最佳状态,热效率能达71.5%;管道具体排布方式对热效率和电池层平均温度的影响不大,而双向螺旋管将冷热管交替布置,较单向螺旋管和蛇形管结构能明显提高电池层温度分布的均匀性,温度分布不均匀度最高可降低37.5%。

Abstract

The traditional PV/T system has been reported with poor heat transfer performance and non-uniform PV temperature distribution respectively. In this study, the pipe-plate structure in PV/T collector was employed with mechanical reinforcement to reduce the thermal resistance at the junction. Three kinds of absorber pipe layouts including serpentine pipe, unidirectional spiral pipe and bidirectional spiral pipe were proposed and evaluated with numerical simulation under various working conditions. The results showed that the system exhibited the best thermal behavior at a flow rate of 90 L/h and solar radiation of 800 W/m2 and the thermal efficiency can reach 71.5%. Different absorber pipe layouts had little effect on the thermal efficiency and PV average temperature. However, the bidirectional spiral pipe in which the cold and hot flows were alternately arranged can significantly improve the uniformity of PV temperature distribution, and the maximum temperature non-uniformity of PV can be reduced by 37.5%.

关键词

太阳集热器 / 换热流动通道 / 数值模拟 / 光伏/光热 / 单向螺旋型换热通道 / 双向螺旋型换热通道

Key words

solar collectors / pipe flow / computational fluid dynamics / photovoltaic/thermal / unidirectional spiral pipe / bidirectional spiral pipe

引用本文

导出引用
张亮, 毕宜鑫, 张高明, 王泽昕, 魏进家. 平板型光伏/光热系统高效换热数值模拟研究[J]. 太阳能学报. 2022, 43(7): 159-165 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1128
Zhang Liang, Bi Yixin, Zhang Gaoming, Wang Zexin, Wei Jinjia. NUMERICAL INVESTIGATION ON HIGH-EFFICIENCY HEAT TRANSFER OF PLATE PHOTOVOLTAIC/THERMAL SYSTEMS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 159-165 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1128
中图分类号: TK513.3   

参考文献

[1] 国网能源研究院有限公司. 全球能源分析与展望2019 [M]. 北京: 中国电力出版社, 2020.
State Grid Energy Research Institute. Global energy analysis and outlook 2019[M]. Beijing: China Electric Power Press, 2020.
[2] 杨金焕, 于化丛, 葛亮. 太阳能光伏发电应用技术 [M]. 北京: 电子工业出版社, 2009.
YANG J H, YU C H, GE L.Application technology of solar photovoltaic power generation[M]. Beijing: Publishing House of Electronics Industry, 2009.
[3] KIANIFARD S, ZAMEN M, NEJAD A A.Modeling, designing and fabrication of a novel PV/T cooling system using half pipe[J]. Journal of cleaner production, 2020, 253: 119972.
[4] ZHOU J Z, ZHU Z, ZHAO X, et al.Theoretical and experimental study of a novel solar indirect-expansion heat pump system employing mini channel PV/T and thermal panels[J]. Renewable energy, 2020, 151: 674-686.
[5] FUDHOLI A, SOPIAN K, YAZDI M H, et al.Performance analysis of photovoltaic thermal (PVT) water collectors[J]. Energy conversion and management, 2014, 78: 641-651.
[6] DAS D, KALITA P, ROY O.Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development[J]. Renewable and sustainable energy reviews, 2018, 84: 111-130.
[7] MAADI S R, KHATIBI M, EBRAHIMNIA-BAJESTAN E, et al.Coupled thermal-optical numerical modeling of PV/T module-Combining CFD approach and two-band radiation DO model[J]. Energy conversion and management, 2019, 198: 111781.
[8] XIAO L, SHI R, WU S Y, et al.Performance study on a photovoltaic thermal (PV/T) stepped solar still with a bottom channel[J]. Desalination, 2019, 471: 114129.
[9] ZHANG H, LIANG K, CHEN H, et al.Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study[J]. Energy, 2019, 177: 66-76.
[10] 葛新石, 叶宏. PV/T电、热联产系统在理想条件下的性能简化分析[J]. 太阳能学报, 2006, 27(1): 30-35.
GE X S, YE H, The simplified performance analysis of the PV/T system under ideal conditions[J]. Acta energiae solaris sinica, 2006, 27(1): 30-35.
[11] 刘仙萍, 饶政华, 廖胜明. 太阳能光伏/管热负荷集热器能量转化性能的数值模拟[J]. 中南大学学报(自然科学版), 2013, 44(6): 2554-2560.
LIU X P, RAO Z H, LIAO S M.Numerical simulation of energy conversion performance for hybrid photovoltaic/thermal solar collector[J]. Journal of Central South University(science and technology), 2013, 44(6): 2554-2560.
[12] JOHN A D, WILLIAM A B.Solar engineering of thermal processes[M]. 4th edition. Troy: BNP Media, 2013.
[13] 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 第2版,西安: 西北工业大学出版社, 2004.
ZHANG H F.Principles of solar thermal utilization and computer simulation[M]. 2nd edition. Xi’an: Northwestern Polytechnical University Press, 2004.
[14] 杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2015.
YANG S M, TAO W Q.Heat transfer[M]. 4th Ed. Beijing: Higher Education Press, 2015.

基金

陕西省重点研发计划(2017ZDXM-GY-017); 陕西省科技创新团队(2019TD-039)

PDF(2035 KB)

Accesses

Citation

Detail

段落导航
相关文章

/