内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制

翟波, 高永, 党晓宏, 蒙仲举, 徐立杰, 刘子剑

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 49-56.

PDF(2858 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2858 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 49-56. DOI: 10.19912/j.0254-0096.tynxb.2020-1138

内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制

  • 翟波1, 高永1, 党晓宏1,2, 蒙仲举1, 徐立杰1, 刘子剑1
作者信息 +

MECHANISM OF PHOTOVOLTAIC POWER STATION ON SOIL MOISTURE AND ITS IMPULSE RESPONSE IN GRASSLAND REGION OF CENTRAL INNER MONGOLIA

  • Zhai Bo1, Gao Yong1, Dang Xiaohong1,2, Meng Zhongju1, Xu Lijie1, Liu Zijian1
Author information +
文章历史 +

摘要

针对内蒙古草原地区光伏电站对降雨的再分配作用下土壤水分空间变异规律及其对降水事件的脉冲响应特征,对草原地区光伏组件下的土壤水分时空特征进行持续观测,并确定光伏组件干扰下的气象因子与土壤水分的关系,最终通过参数估计厘清光伏组件对土壤水分脉冲响应的作用机制。结果表明:光伏组件前檐下方的土壤总储水量整体高于组件下方和未架设组件区域的土壤储水量;光伏组件前檐的各土层储水量对降水的响应均较强,光伏组件下各层土壤储水量对降水无明显响应过程;光伏组件下大气湿度与0~10、10~20和20~30 cm土层储水量的相关系数分别为0.889、0.579和0.414;光伏组件前檐10、20和30 cm土层的含水量对降水量的脉冲响应方程R2分别为0.875、0.938和0.957,降水量的补给对0~30 cm土层的脉冲事件均产生促进作用。未架设组件区域的20 cm土层含水量对自然降水有较好的响应过程。

Abstract

Aiming at the spatial variability of soil moisture under the redistribution of rainfall by photovoltaic power stations in Inner Mongolia grassland and its impulse response characteristics to precipitation events, continuously observe the temporal and spatial characteristics of soil moisture under photovoltaic panels in grassland areas were continously observed, and analyze the relationship between meteorological factors and soil moisture under photovoltaic panel interference was determinded. Finally clarify the influence mechanism of photovoltaic panels on soil moisture impulse response was clarified through parameter estimation. The results show that the total water storage capacity of the soil under the front eaves of the photovoltaic panels is higher than the soil water storage capacity under the photovoltaic panels and the areas where photovoltaic panels are not installed. The soil water storage of each layer of the front eaves of the photovoltaic panel has a strong response to precipitation. The soil water storage in each layer under the photovoltaic panel has no obvious response process to precipitation; The correlation coefficients between atmospheric humidity and 0-10 cm, 10-20 cm and 20-30 cm soil water storage are 0.889, 0.579 and 0.414; The pulse equation R2 of the moisture content of the 10 cm, 20 cm and 30 cm soil layer of the photovoltaic panel front eaves and the natural precipitation is 0.875, 0.938, 0.957, the replenishment of precipitation promotes the pulse responses of the 0-30 cm soil layer moisture. The water content of the 0-20 cm soil layer in the area where photovoltaic panels are not installed has a good response process to natural precipitation.

关键词

光伏电站 / 土壤含水量 / 降水(气象学) / 环境因子 / 脉冲反应

Key words

photovoltaic station / soil moisture / precipitation (meteorology) / environmental factors / impulse response

引用本文

导出引用
翟波, 高永, 党晓宏, 蒙仲举, 徐立杰, 刘子剑. 内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制[J]. 太阳能学报. 2022, 43(6): 49-56 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1138
Zhai Bo, Gao Yong, Dang Xiaohong, Meng Zhongju, Xu Lijie, Liu Zijian. MECHANISM OF PHOTOVOLTAIC POWER STATION ON SOIL MOISTURE AND ITS IMPULSE RESPONSE IN GRASSLAND REGION OF CENTRAL INNER MONGOLIA[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 49-56 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1138
中图分类号: S214.9   

参考文献

[1] 林智钦. 中国能源环境中长期发展战略[J]. 中国软科学, 2013(12): 45-57.
LIN Z Q.Medium and long-term development strategy of China’s energy & environment[J]. China soft science, 2013(12): 45-57.
[2] 曹承栋. 浅谈国内外太阳能发电技术发展状况及展望[J]. 通信电源技术, 2011, 28(1): 35-37.
CAO C D.Development and trends of solar energy pv generation at home and aboard[J]. Telecom power technology, 2011, 28(1): 35-37.
[3] 刘建涛, 曹雷, 马杰, 等. 基于储能系统的用户光伏并网发电系统经济性分析[J]. 太阳能学报, 2012, 33(11): 1887-1892.
LIU J T, CAO L, MA J, et al.Economic analysis of user’s grid-connected pv system based on energy storage system[J]. Acta energiae solaris sinica, 2012, 33(11): 1887-1892.
[4] 柴亚凡, 周波, 李欣娟, 等. 戈壁荒漠区光伏发电项目水土流失特征及其影响指数[J]. 中国水土保持科学, 2014, 12(6): 105-110.
CHAI Y F, ZHOU B, LI X J, et al.Characteristics and impact index of soil and water loss in photovoltaic power generation projects in gobi desert area[J]. Science of soil and water conservation, 2014, 12(6): 105-110.
[5] 刘世增, 常兆丰, 朱淑娟, 等. 沙漠戈壁光伏电厂的生态学意义[J]. 生态经济, 2016, 32(2): 177-181.
LIU S Z, CHANG Z F, ZHU S J, et al.Ecological significance of photovoltaic power plants in the desert and gobi[J]. Ecological economy, 2016, 32(2): 177-181.
[6] 翟波, 高永, 党晓宏, 等. 光伏组件对羊草群落特征及多样性的影响[J]. 生态学杂志, 2018, 37(8): 2237-2243.
ZHAI B, GAO Y, DANG X H, et al.Effects of photovoltaic panels on the characteristics and diversity of Leymus chihehsis community[J]. Chinese journal of ecology, 2018, 37(8): 2237-2243.
[7] TSOUTSOS T, FRANTZESKAKI N, GEKAS V.Environmental impacts from the solar energy technologies[J]. Energy policy, 2005, 33(3): 289-296.
[8] MASSON V, BONHOMME M, SALAGNAC J L, et al.Solar panels reduce both global warming and urban heat island[J]. Frontiers in environmental science, 2014, 14(2): 1-10.
[9] BARRON-GAFFORD G A, MINOR R L, ALLEN N A, et al. The photovoltaic heat island effect: larger solar power plants increase local temperatures[J]. Scientific reports, 2016(6): 1-7.
[10] CHANG R, SHEN Y, LUO Y, et al.Observed surface radiation andtemperature impacts from the large-scale deployment of photovoltaicsin the barren area of Gonghe, China[J]. Renewable energy, 2018, 118: 131-137.
[11] DIRMEYER P A, SHUKLA J.Albedo as a modulator of climate response to tropical deforestation[J]. Journal of geophysical research atmospheres, 1994, 99(D10): 20863-20877.
[12] ARMSTRONG A, WALDRON S, WHITAKER J, et al.Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate[J]. Global change biology, 2013, 20(6):1699-1706.
[13] HARPER C W, BLAIR J M, FAY P A, et al.Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem[J]. Global change biology, 2005, 11(2): 322-334.
[14] FAY P A, BLAIR J M, SMITH M D, et al.Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J]. Biogeo sciences, 2011, 8: 3053-3068.
[15] 郭群. 草原生态系统生产力对降水格局响应的研究进展[J]. 应用生态学报, 2019, 30(7): 2201-2210.
GUO Q.Responses of grassland ecosystem productivity to altered precipitation regime: A review[J]. Chinese journal of applied ecology, 2019, 30(7): 2201-2210.
[16] TISSUE W D T. Resource pulses in arid environments: patterns of rain, patterns of life[J]. New phytologist, 2003, 157(2): 171-173.
[17] 徐敏, 边红枫, 徐丽, 等. 脉冲式降水对不同类型草地土壤微生物呼吸碳释放量的影响[J]. 生态学报, 2020, 40(5): 1562-1571.
XU M, BIAN H F, XU L, et al. Effects of precipitation pulse on soil carbon released by microbes in different grasslands[J]. Acta ecologica sinica, 2020, 405): 1562-1571.
[18] KNAPP A K.Variation among biomes in temporal dynamics of aboveground primary production[J]. Science, 2001, 291(5503): 481-484.
[19] 林莎, 贺康宁, 王莉, 等. 基于地统计学的黄土高寒区典型林地土壤水分盈亏状况研究[J]. 生态学报, 2020, 40(2): 728-737.
LIN S, HE K N, WANG L, et al.Soil moisture surplus and loss of typical forestland in loess alpine area by the geostatistical analyst method[J]. Acta ecological sinica, 2020, 40(2): 728-737.
[20] 郝彦宾. 内蒙古羊草草原碳通量观测及其驱动机制分析[D]. 北京: 中国科学院研究生院(植物研究所), 2006.
HAO Y B.Characteristics of net ecosystem exchange of carbon dioxide and their driving factors over a fenced Leymus chinensis steppe in Inner Mongolia[D]. Beijing: Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 2006.
[21] 苗海霞. 开垦和放牧对内蒙古半干旱草原蒸发散的影响[D]. 北京: 中国科学院研究生院(植物研究所), 2008.
MIAO H X.Effects of cultivation and grazing on evapotranspiration of steppe ecosystems in Inner Mongolia, China[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2008.
[22] LIU X, WAN S, SU B, et al.Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and soil, 2002, 240(2): 213-223.
[23] PHILIP J R.The theory of Infiltration: 5 the influence of the initial moisture content[J]. Soil science, 1957, 84(4): 329-340.
[24] 朱红艳. 干旱地域地下水浅埋区土壤水分变化规律研究[D]. 杨凌: 西北农林科技大学, 2014.
ZHU H Y.Research on soil moisture variation in shallow groundwater area of arid regions[D]. Yangling: Northwest A&F University, 2014.
[25] KRAUTER S, HANITSCH R, MOREIRA L.New optical and thermal enhanced PV-modules performing 12% better under true module rating conditions[C]//IEEE Photovoltaic Specialists Conference, IEEE, Washington DC, USA, 1996.
[26] 高晓清, 杨丽薇, 吕芳, 等. 光伏电站对格尔木荒漠地区土壤温度的影响研究[J]. 太阳能学报, 2016, 37(6):1439-1445.
GAO X Q, YANG L W, LYU F, et al.Effect of PV Farm on soil temperature in golmud desert area[J]. Acta energiae solaris sinica, 2016, 37(6): 1439-1445.
[27] 张文东. 湿度计量技术的发展[J]. 上海计量测试, 2011, 38(1): 2-6, 15.
ZHANG W D.The progress of the humidity measuring technique[J]. Shanghai measurement and testing, 2011, 38(1): 2-6, 15.
[28] HEISLER-WHITE J L, KELLY K E F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland[J]. Oecologia, 2008, 158(1): 129-140.
[29] 陈敏玲, 张兵伟, 任婷婷, 等. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668.
CHEN M L, ZHANG B W, REN T T, et al.Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China[J]. Chinese journal of plant ecology, 2016, 40(7): 658-668.
[30] HUXMAN T E, SNYDER K A, TISSUE D, et al.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems[J]. Oecologia, 2004, 141(2): 254-268.
[31] THOMEY M L, COLLINS S L, VARGAS R, et al.Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland[J]. Global change biology, 2011, 17(4): 1505-1515.

基金

内蒙古自治区高等学校科研项目(NJZY19052); 中央引导地方科技发展专项资金:内蒙古荒漠化防治创新研究中心和内蒙古自治区第十届“草原英才”(PC201907220608)项目联合资助

PDF(2858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/