660 MW燃煤发电机组的碳捕集系统余热利用和集成系统性能评估

董志坚, 叶学民, 宋睿哲, 李春曦

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 203-211.

PDF(1989 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1989 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 203-211. DOI: 10.19912/j.0254-0096.tynxb.2020-1148

660 MW燃煤发电机组的碳捕集系统余热利用和集成系统性能评估

  • 董志坚1,2, 叶学民1,2, 宋睿哲1,2, 李春曦1,2
作者信息 +

CARBON CAPTURE SYSTEM WASTE HEAT UTILIZATION AND INTEGRATED SYSTEM PERFORMANCE EVALUATION OF 660 MW COAL-FIRED POWER UNITS

  • Dong Zhijian1,2, Ye Xuemin1,2, Song Ruizhe1,2, Li Chunxi1,2
Author information +
文章历史 +

摘要

碳捕集与封存(CCS)技术能有效捕获燃煤电厂排放的CO2但再生能耗大且效率低。为提高燃煤电厂能源利用效率,提出集成有机朗肯循环(ORC)与CCS的太阳能-燃煤发电系统,利用热力学、火用和经济性分析模型对集成系统进行参数敏感性分析。基于外部燃料火用矩阵模型,分析再沸器所需热量中CO2压缩过程和太阳能集热器的热量占比及集成ORC系统对外部燃料火用贡献度的影响。研究表明:当热源比θ=0.4时的集成系统热经济性能最优且具有较合理的不可逆性;集成ORC系统后锅炉燃煤火用、一、二次再热燃煤火用对系统产品的贡献度均有所提高;随着θ增加,锅炉燃煤火用和一、二次再热燃煤火用对碳捕集系统产品的贡献度逐渐降低;压缩余热火用和太阳能火用的贡献度逐渐增加。

Abstract

Carbon capture and storage (CCS) technology can effectively capture the CO2 emitted by coal-fired power generation units, but consume large amounts of renewable energy, leading to an efficiency penalty. To promote energy utilization efficiency of coal-fired power generation units, a solar-aided coal-fired power generation system using organic Rankine cycle (ORC) and CCS is proposed, and the parameter sensitivity of the integrated system is conducted with thermodynamic, exergy and economic analysis models. Based on the external fuel exergy matrix model, the influence of the heat ratio of the CO2 compression process and solar collector to the heat required by the reboiler and the integrated ORC system on the contribution of external fuel exergy, is examined. Results reveal that the thermo-economics of the integrated system is the best and exhibits reasonable irreversibility at the heat ratio of 0.4. After integrating ORC system, the contributions of coal exergy in the boiler, primary and secondary reheat coal exergy to the system products are raised. With increasing heat ratio, the contributions of coal exergy in boiler, primary and secondary reheat coal exergy to carbon capture system products are reduced, whereas the contributions of the exergy of compressed waste heat and solar are raised.

关键词

碳捕集与封存 / 太阳能 / 余热利用 / CO2压缩 / 有机朗肯循环 / 外部燃料火用贡献度

Key words

carbon capture and storage / solar energy / waste heat utilization / CO2 compression / organic Rankine cycle / exergy contribution of external fuel

引用本文

导出引用
董志坚, 叶学民, 宋睿哲, 李春曦. 660 MW燃煤发电机组的碳捕集系统余热利用和集成系统性能评估[J]. 太阳能学报. 2022, 43(7): 203-211 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1148
Dong Zhijian, Ye Xuemin, Song Ruizhe, Li Chunxi. CARBON CAPTURE SYSTEM WASTE HEAT UTILIZATION AND INTEGRATED SYSTEM PERFORMANCE EVALUATION OF 660 MW COAL-FIRED POWER UNITS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 203-211 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1148
中图分类号: TM611   

参考文献

[1] WILBERFORCE T, BAROUTAJI A, SOUDAN B, et al.Outlook of carbon capture technology and challenges[J]. Science of the total environment, 2019, 657: 56-72.
[2] JIN B, ZHAO H B, ZHENG C G.Optimization and control for CO2 compression and purification unit in oxy-combustion power plants[J]. Energy, 2015, 83: 416-430.
[3] 王继选, 刘小贞, 高丽莎, 等. 太阳能-碳捕集机组热经济性分析及生命周期评价[J]. 太阳能学报, 2019, 40(3):772-781.
WANG J X, LIU X Z, GAO L S, et al.Thermal economy analysis and life cycle evaluation of solar-carbon capture unit[J]. Acta energiae solaris sinica, 2019, 40(3): 772-781.
[4] WANG J X, DUAN L Q, YANG Y P, et al.Study on the general system integration optimization method of the solar aided coal-fired power generation system[J]. Energy, 2019, 169: 660-673.
[5] 汤学忠. 热能转换与利用第2版[M]. 北京: 冶金工业出版社, 2002: 268.
TANG X Z.Thermal energy conversion and utilization second edition[M]. Beijing: Metallurgical Industry Press, 2002: 268.
[6] 顾煜炯, 耿直, 谢典. 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490.
GU Y J, GENG Z, XIE D.Performance analysis and comprehensive evaluation of solar organic Rankine circulatory system[J]. Acta energiae solaris sinica, 2018, 39(2): 482-490.
[7] 王辉涛, 王华, 龙恩深, 等. 低温废气余热驱动有机朗肯循环的优化[J]. 太阳能学报, 2013, 34(7): 1183-1189.
WANG H T, WANG H,LONG E S, et al.Parameter optimization of the low-temperature exhaust gas waste heat powered organic Rankine cycle[J]. Acta energiae solaris sinica, 2013, 34(7): 1183-1189.
[8] KURTULUS K, COSKUN A, AMEEN S, et al.Thermoeconomic analysis of a CO2 compression system using waste heat into the regenerative organic Rankine cycle[J]. Energy conversion and management, 2018, 168: 588-598.
[9] HOU Z L, WEI X, MA X, et al.Exergoeconomic evaluation of waste heat power generation project employing organic Rankine cycle[J]. Journal of cleaner production, 2020, 246: 119064.
[10] FARAJOLLAHI H, HOSSAINPOUR S.Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression[J]. Energy, 2017, 118: 927-936.
[11] 李沁伦, 王璐凯, 刘银河. 燃煤发电机组烟气余热利用系统改进研究[J]. 动力工程学报, 2019, 39(12): 1019-1026.
LI Q L, WANG L K, LIU Y H.Study on improvement of flue gas waste heat utilization system of coal-fired generating units[J]. Journal of power engineering, 2019, 39(12): 1019-1026.
[12] 杨勇平, 朱勇, 翟融融. 塔式太阳能辅助燃煤发电系统太阳能贡献度研究[J]. 华北电力大学学报, 2016, 43(3): 56-63.
YANG Y P, ZHU Y, ZHAI R R.Study on solar contribution of solar tower aided coal-fired power generation system[J]. Journal of North China Electric Power University, 2016, 43(3): 56-63.
[13] HOU H J, XU Z, YANG Y P.An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis[J]. Applied energy, 2016, 182: 1-8.
[14] LI C X, GUO S Q, YE X M, et al.Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture[J]. Energy, 2019, 177: 1-15.
[15] XU G, WU Y, YANG Y P, et al.A novel integrated system with power generation, CO2 capture, and heat supply[J]. Applied thermal engineering, 2013, 61(2): 110-120.
[16] KALOGIROU SA, LLOYD S, WARD J, et al.Design and performance characteristics of a parabolic-trough solar- collector system[J]. Applied energy, 1994, 47(4): 341-354.
[17] TUNC M, SISBOT S, CAMDALI U.Exergy analysis of electricity generation for the geothermal resources using organic Rankine cycle: Kizildere-Denizli case[J]. Environmental progress & sustainable energy, 2013, 32(3): 830-836.
[18] XIA X X, WANG Z Q, HU Y H, et al.A novel comprehensive evaluation methodology of organic Rankine cycle for parameters design and working fluid selection[J]. Applied thermal engineering, 2018, 143: 283-292.
[19] GAO M, SONG K Q, LU D Y, et al.Economic analysis and research on feed water pumps coaxially driven by turbine for 1000 MW direct air-cooling units[J]. Applied thermal engineering, 2016, 106: 944-950.
[20] DEMIERRE J, FAVRAT D, SCHIFFMANN J, et al.Experimental investigation of a thermally driven heat pump based on a double organic Rankine cycle and an oil-free compressor-turbine unit[J]. International journal of refrigeration, 2014, 44: 91-100.
[21] PETRAKOPOULOU F.Comparative evaluation of power plants with CO2 capture: Thermodynamic, economic and environmental performance[D]. Berlin: Berlin Technical University, 2011.
[22] VALERO A, LOZANO M A, MUNOZ M.A general theory of exergy saving. I. On the exergetic cost[J]. Computer-aided engineering and energy systems: second law analysis and modelling, 1986, 3: 31-38.
[23] VALERO A, LERCH F, SERRA L, et al.Structural theory and thermo-economic diagnosis: Part II: Application to an actual power plant[J]. Energy conversion and management, 2002, 43(9): 1519-1535.
[24] 赵苗苗. 太阳能辅助燃煤机组碳捕集系统性能研究[D]. 北京: 华北电力大学, 2016.
ZHAO M M.Research on solar aided coal-fired power plant and CO2 capture system performance[D]. Beijing: North China Electric Power University, 2016.
[25] TORRES C, SERRA L, VALERO A.The productive structure and thermoeconomic theories of system optimization[C]//Proceedings of ASME Advanced Energy Systems Division, New York, 1996, 36: 429-436.
[26] ERLACH B, SERRA L, VALERO A.Structural theory as standard for thermoeconomics[J]. Energy conversion & management, 1999, 40: 1627-1649.
[27] XU C, LI X S, XU G, et al.Energy, exergy and economic analyses of a novel solar-lignite hybrid power generation process using lignite pre-drying[J]. Energy conversion & management, 2018, 170: 19-33.
[28] 王淑娟, 陈昌和, 徐旭常. 电厂烟气氨法脱碳技术研究进展[J]. 化工学报, 2009, 60(2): 269-278.
WANG S J, CHEN C H, XU X C.Research progress of ammonia decarbonization technology for power plant flue gas[J]. CIESC journal, 2009, 60(2): 269-278.
[29] 薛章涵. 燃煤锅炉烟气脱硫脱碳单元与热力系统集成优化[D]. 北京: 华北电力大学, 2017.
XUE Z H.Coal-fired boiler flue gas desulfurization and decarburization unit and thermal system integration optimization[D]. Beijing: North China Electric Power University, 2017.
[30] FENG Y, ZHANG Y, LI B, et al.Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)[J]. Energy conversion & management, 2015, 96: 58-71.
[31] ZHAO Y W, HONG H, ZHANG X S, et al.Integrating mid-temperature solar heat and post-combustion CO2 capture in a coal-fired power plant[J]. Solar energy, 2012, 86(11): 3196-3204.

基金

国家自然科学基金(51606066)

PDF(1989 KB)

Accesses

Citation

Detail

段落导航
相关文章

/