设计一种使用S-CO2布雷顿循环的太阳能电力淡水系统,对系统的工作原理和结构组成进行介绍,并对系统开展运行性能和火用分析。结果表明,设计工况下系统的输出电功率为233.8 MW,布雷顿循环效率为37.5%,淡水日产量为3981.6 t。增大太阳辐照度有利于提高系统的电力输出和总的能量效率。定工况下的火用分析结果表明,太阳塔集热器中的火用损最大,为303.99 MW,对应的火用效率为64.45%。海水淡化换热器的火用效率最低,且其火用损值也较大。随着太阳辐照度的增加,太阳塔集热器、海水淡化系统换热器和回热器内的火用损均有不同幅度的增加。因此,对于该S-CO2布雷顿循环太阳能电力淡水系统的后续优化而言,应重点考虑改进这些部件的性能。
Abstract
S-CO2 Brayton cycle-based solar system for electricity and fresh water productions is designed. The working principle as well as the configuration of the system is introduced. The operation performance and exergy analyses of the system are carried out. The results show that the output power and Brayton cycle efficiency of the system are 233.8 MW and 37.5%. The daily fresh water output is 3981.6 t. Increasing the solar intensity can improve the output power as well as the overall energy efficiency of the system. The exergy analysis results under the design condition reveal that the exergy loss in the solar tower is the maximum, which is 303.99 MW. Its corresponding exergy efficiency is 64.45%. The exergy efficiency in the heat exchanger of desalination device is the lowest, and the corresponding exergy loss is relatively large. With the solar intensity increased, the solar tower, heat exchanger of desalination device and two recuperators all have varying degrees of exergy loss increase. Hence, for the further optimization of the system, the performances of these components should be given priority.
关键词
太阳能海水淡化 /
布雷顿循环 /
太阳能发电 /
火用 /
超临界二氧化碳
Key words
solar desalination /
Brayton cycle /
solar power generation /
exergy /
supercritical CO2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WANG G, YU S Y, NIU S Q, et al.A comprehensive parametric study on integrated thermal and mechanical performances of molten-salt-based thermocline tank[J]. Applied thermal engineering, 2020, 170: 115010.
[2] 陈子乾, 郑宏飞, 马朝臣, 等. 低温多效太阳能海水淡化装置最优集热系统的匹配研究[J]. 太阳能学报, 2008, 29(6): 40-45.
CHEN Z Q, ZHENG H F, MA C C, et al.Study on the optimal parameters for the solar heating system for a low-temperature multi-effect solar desalination unit[J]. Acta energiae solaris sinica, 2008, 29(6): 40-45.
[3] MOHAMMADI K, SAGHAFFAR M, ELLINGWOOD K, et al.Hybrid concentrated solar power(CSP)-desalination systems: A review[J]. Desalination, 2019, 468: 114083.
[4] ADDOUS M, JARADAT M, BDOUR M.Combined concentrated solar power plant with low-temperature multi-effect distillation[J]. Energy exploration & exploitation, 2020, 38(5): 1-23.
[5] SOOMRO M, KIM W S.Performance and economic investigations of solar power tower plant integrated with direct contact membrane distillation system[J]. Energy conversion & management, 2018, 174: 626-638.
[6] PALENZUELA P, ZARAGOZA G, DIEGO C, et al.Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions[J]. Energy, 2011, 36: 4950-4958.
[7] WANG K, HE Y L, ZHU H H.Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts[J]. Applied energy, 2017, 195: 819-836.
[8] WANG G, CAO Y, WANG S K, et al.Design and preliminary performance analysis of a novel solar-gas combined cycle system[J]. Applied thermal engineering, 2020, 172: 115184.
[9] 王兵兵, 乔加飞. 再压缩式超临界二氧化碳布雷顿循环的特性研究[J]. 动力工程学报, 2018, 38(9): 763-772.
WANG B B, QIAO J F.Characteristic analysis of an S-CO2 recompression Brayton cycle[J]. Journal of Chinese Society of Power Engineering, 2018, 38(9): 763-772.
基金
吉林省优秀青年人才基金(20190103062JH)