计及风电条件风险价值的鲁棒柔性超前调度

李飞, 姚敏东, 李靖

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 356-365.

PDF(1891 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1891 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 356-365. DOI: 10.19912/j.0254-0096.tynxb.2020-1156

计及风电条件风险价值的鲁棒柔性超前调度

  • 李飞1, 姚敏东2, 李靖1,3
作者信息 +

ROBUST FLEXIBLE LOOK-AHEAD DISPATCH CONSIDERING CVAR OF WIND POWER

  • Li Fei1, Yao Mindong2, Li Jing1,3
Author information +
文章历史 +

摘要

提出一种考虑大规模风电并网的超前优化调度方法,引入风电条件风险价值来评估风电消纳风险。建立基于鲁棒优化的柔性超前调度模型,以平衡运行成本与风电条件风险价值。根据该模型,对AGC机组的基点功率、参与因子、柔性容量进行协同优化,还可得到各风电场输出功率的可容许区域。提出一种基于大M法和分解法的求解双线性规划模型的高效算法。所提模型及算法结合鲁棒优化与随机优化的优点,在保证计算效率的同时,可避免鲁棒优化的过度保守。仿真结果验证了所提模型及算法的有效性。

Abstract

This paper presents a look-ahead optimal dispatch method considering large-scale wind power integration. The conditional value-at-risk of wind power condition is introduced to evaluate the risk of wind power accommodation. A flexible look-ahead dispatch model based on robust optimization is established to balance operating cost and the conditional value-at-risk of wind power. According to the proposed model, the base point, participation factor and flexible capacity of AGC unit are optimized, and the admissible region of wind power on each wind farm is also obtained. An efficient algorithm for bilinear programming model based on the big-M method and the decomposition method is proposed. The proposed model and algorithm combine the advantages of robust optimization and stochastic optimization to ensure the calculation efficiency and avoid the over conservativeness of robust optimization. The simulation results verify the effectiveness of the proposed model and algorithm.

关键词

电力系统 / 风电 / 条件风险价值 / 风险评估 / 鲁棒优化 / 超前调度

Key words

power system / wind power / conditional value-at-risk / risk assessment / robust optimization / robust optimization / look-ahead dispatch

引用本文

导出引用
李飞, 姚敏东, 李靖. 计及风电条件风险价值的鲁棒柔性超前调度[J]. 太阳能学报. 2022, 43(7): 356-365 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1156
Li Fei, Yao Mindong, Li Jing. ROBUST FLEXIBLE LOOK-AHEAD DISPATCH CONSIDERING CVAR OF WIND POWER[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 356-365 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1156
中图分类号: TM73   

参考文献

[1] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674.
XIAO Y P, WANG X F, WANG X L, et al.Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.
[2] 罗翼婷, 杨洪明, 牛犇, 等. 考虑多风能预测场景的虚拟电厂日内滚动柔性优化调度方法[J]. 电力系统保护与控制, 2020, 48(2): 51-59.
LUO Y T, YANG H M, NIU B, et al.Day-ahead flexible rolling optimization dispatch of virtual power plant based on multi-wind forecasting results[J]. Power system protection and control, 2020, 48(2): 51-59.
[3] ZHANG X, HUG G, HARJUNKKOSKI I, et al.Cost-effective scheduling of steel plants with flexible EAFs[J]. IEEE transactions on smart grid, 2017, 8(1): 239-249.
[4] MENG K, YANG H M, DONG Z Y, et al.Flexible operational planning framework considering multiple wind energy forecasting service providers[J]. IEEE transactions on sustainable energy, 2016, 7(2): 708-717.
[5] WU C, HUG G, KAR S.Risk-limiting economic dispatch for electricity markets with flexible ramping products[J]. IEEE transactions on power systems, 2016, 31(3): 1990-2003.
[6] 郭尊, 李庚银, 周明, 等. 考虑网络约束和源荷不确定性的区域综合能源系统两阶段鲁棒优化调度[J]. 电网技术, 2019, 43(9): 3090-3100.
GUO Z, LI G Y, ZHOU M, et al.Two-stage robust optimal scheduling of regional integrated energy system considering network constraints and uncertainties in source and load[J]. Power system technology, 2019, 43(9): 3090-3100.
[7] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电气能源系统两阶段分布鲁棒协同调度[J]. 电力系统自动化, 2018, 42(13): 43-50.
SHUI Y, LIU J Y, GAO H J, et al.Two-stage distributed robust cooperative dispatch for integrated electricity and natural gas energy systems considering uncertainty of wind power[J]. Automation of electric power systems, 2018, 42(13): 43-50.
[8] 张刘冬, 袁宇波, 孙大雁. 基于两阶段鲁棒区间优化的风储联合运行调度模型[J]. 电力自动化设备, 2018, 38(12): 59-66.
ZHANG L D, YUAN Y B, SUN D Y.Joint operation model of wind-storage system based on two-stage robust interval optimization[J]. Electric power automation equipment, 2018, 38(12): 59-66.
[9] LI Z G, WU W C, ZHANG B M, et al.Adjustable robust real-time power dispatch with large-scale wind power integration[J]. IEEE transactions on sustainable energy, 2015, 6(2): 357-368.
[10] WANG C, LIU F, WANG J H, et al.Risk-based admissibility assessment of wind generation integrated into a bulk power system[J]. IEEE transactions on sustainable energy, 2016, 7(1): 325-336.
[11] WANG C, LIU F, WANG J H, et al.Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach[J]. IEEE transactions on power systems, 2017, 32(1): 723-733.
[12] 胡浩, 王英瑞, 曾博, 等. 基于CVaR理论的综合能源系统经济优化调度[J]. 电力自动化设备, 2017, 37(6): 209-219.
HU H, WANG Y R, ZENG B, et al.CVaR-based economic optimal dispatch of integrated energy system[J]. Electric power automation equipment, 2017, 37(6): 209-219.
[13] WANG Z, BIAN Q Y, XIN H H, et al.A distributionally robust coordinated reserve scheduling model considering CVaR-based wind power reserve requirements[J]. IEEE transactions on sustainable energy, 2016, 7(2): 625-636.
[14] 邓创, 鞠立伟, 刘俊勇, 等. 基于模糊CVaR理论的水火电系统随机调度多目标优化模型[J]. 电网技术, 2016, 40(5): 1447-1454.
DENG C, JU L W, LIU J Y, et al.Stochastic scheduling multi-objective optimization model for hydro-thermal power systems based on fuzzy CVaR theory[J]. Power system technology, 2016, 40(5): 1447-1454.
[15] NAVID N, ROSENWALD G.Market solutions for managing ramp flexibility with high penetration of renewable resource[J]. IEEE transactions on sustainable energy, 2012, 3(4): 784-790.
[16] YANG M, WANG M Q, CHENG F L, et al.Robust economic dispatch considering automatic generation control with affine recourse process[J]. International journal of electrical power & energy systems, 2016, 81(10): 289-298.
[17] 甘伟, 郭剑波, 李相俊, 等. 面向多应用需求的分布式储能优化调度[J]. 电网技术, 2019, 43(5): 1504-1511.
GAN W, GUO J B, LI X J, et al.Distributed energy storage optimization scheduling for multiple application requirements[J]. Power system technology, 2019, 43(5): 1504-1511.
[18] FU Y, SHAHIDEHPOUR M.Fast SCUC for large-scale power systems[J]. IEEE transactions on power systems, 2007, 22(4): 2144-2151.
[19] MOJTABA K, YONG F, LIN G.A fully parallel stochastic multi-area power system operation considering large-scale wind power integration[J]. IEEE transactions on sustainable energy, 2018, 9(1): 138-147.
[20] 谢敏, 罗文豪, 吉祥, 等. 随机风电接入的电力系统动态经济调度多场景协同优化[J]. 电力自动化设备, 2019, 39(11): 27-33.
XIE M, LUO W H, JI X, et al.Multi-scenario collaborative optimization for dynamic economic dispatch of power system with stochastic wind power integration[J]. Electric power automation equipment, 2019, 39(11): 27-33.
[21] LI G Q, ZHANG R F, JIANG T, et al.Optimal dispatch strategy for integrated energy systems with CCHP and wind power[J]. Applied energy, 2017, 192(15): 408-419.
[22] 余娟, 时权妍, 杨知方, 等. 考虑电解水与甲烷化运行特性的电转气系统日前调度方法[J]. 电力系统自动化, 2019, 43(18): 18-25.
YU J, SHI Q Y, YANG Z F, et al.Day-ahead scheduling method of power-to-gas system considering operation characteristics of water electrolysis and methanation[J]. Automation of electric power systems, 2019, 43(18): 18-25.

基金

国家自然科学基金(51677066); 国家电网公司科技项目(52573015000J)

PDF(1891 KB)

Accesses

Citation

Detail

段落导航
相关文章

/