基于二进制序列的燃料电池宽频带EIS测试

金致含, 苏建徽, 施永, 汪海宁

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 1-8.

PDF(3562 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3562 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2020-1162

基于二进制序列的燃料电池宽频带EIS测试

  • 金致含1,2, 苏建徽1,2, 施永1,2, 汪海宁1,2
作者信息 +

BROADBAND EIS TEST OF FUEL CELL BASED ON BINARY SEQUENCES

  • Jin Zhihan1,2, Su Jianhui1,2, Shi Yong1,2, Wang Haining1,2
Author information +
文章历史 +

摘要

目前电化学阻抗谱广泛应用于燃料电池故障诊断。针对诊断设备成本高昂的问题,提出集成在燃料电池系统DC/DC变换器的EIS测试方法,将激励信号在变换器双闭环控制的参考信号上分别施加干扰,实现了燃料电池电流和电压宽频带的在线扰动。为实现快速测试,采用一种伪随机二进制序列作为激励信号,可同时满足频率宽度和功率强度需求。实验采用Matlab/Simulink建模仿真,通过硬件在环实验验证,测试方法满足时间和精度要求,可通过嵌入式系统实现在线测试。

Abstract

Currently, electrochemical impedance spectroscopy is widely used for fault diagnosis of fuel cells. In view of the high cost of diagnostic equipment, an EIS test method integrated in the DC/DC converter of the fuel cells system is proposed. An excitation signal is applied to the reference signals for dual-loop control of the converter separately. It causes broadband online disturbances of fuel cells’ current and voltage. For faster testing, a kind of pseudo-random binary sequence is designed as the excitation signal to meet the needs of bandwidth and power intensity. The experiment uses MATLAB/Simulink for modeling and simulation, and is verified by hardware-in-the-loop experiments. This method meets the requirements of time consumption and high accuracy, and online testing can be realized through embedded systems.

关键词

燃料电池 / 故障诊断 / 电化学阻抗谱 / 二进制序列

Key words

fuel cells / fault diagnosis / electrochemical impedance spectroscopy / binary sequences

引用本文

导出引用
金致含, 苏建徽, 施永, 汪海宁. 基于二进制序列的燃料电池宽频带EIS测试[J]. 太阳能学报. 2022, 43(7): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1162
Jin Zhihan, Su Jianhui, Shi Yong, Wang Haining. BROADBAND EIS TEST OF FUEL CELL BASED ON BINARY SEQUENCES[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1162
中图分类号: TM911.4   

参考文献

[1] 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.
SHAO Z G, YI B L.Development and prospects of hydrogen energy and fuel cells[J]. Proceedings of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
[2] 彭跃进, 张国瑞, 王勇, 等. 阴、阳极加湿对质子交换膜燃料电池性能影响的差异性[J]. 电工技术学报, 2017, 32(4): 196-203.
PENG Y J, ZHANG G R, WANG Y, et al.Differences on the influences of humidity of cathod and anode on the performance of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 196-203.
[3] 张新丰, 章桐. 质子交换膜燃料电池水含量实验测量方法综述[J]. 仪器仪表学报, 2012, 33(9): 2151-2160.
ZHANG X F, ZHANG T.Review on water content measurement technology for PEM fuel cell[J]. Chinese journal of scientific instrument, 2012, 33(09): 2151-2160.
[4] 宋满存, 裴普成, 曾夏, 等. PEMFC水淹的阳极气体压力降变化特征预警技术[J]. 农业机械学报, 2014, 45(7): 340-346.
SONG M C, PEI P C, ZENG X, et al.PEMFC flooded anode gas pressure drop characteristics early warning technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 340-346.
[5] 王振, 卫东, 叶洪吉. 基于温湿度解耦建模的质子交换膜燃料电池内阻特性研究[J]. 太阳能学报, 2020, 41(9): 1-8.
WANG Z, WEI D, YE H J.Internal resistance of PEMFC modeled based on temperature and humidity decoupling modeling[J]. Acta energiae solaris sinica, 2020, 41(9): 1-8.
[6] 王珂, 陈维荣, 韩明, 等. 基于电流断路法的空冷型燃料电池阻抗谱实验分析[J]. 中国电机工程学报, 2012, 32(29): 87-93, 7.
WANG K, CHEN W R, HAN M, et al.Experimental diagnosis of air breath proton exchange membrane fuel cell through current interrupt[J]. Proceedings of the CSEE, 2012, 32(29): 87-93, 7.
[7] HINAJE M, SADLI I, MARTIN J P, et al.Online humidification diagnosis of a PEMFC using a static DC-DC converter[J]. International journal of hydrogen energy, 2019, 34(6): 2718-2723.
[8] HONG P, LI J, XU L, et al.Modeling and simulation of parallel DC/DC converters for online AC impedance estimation of PEM fuel cell stack[J]. International journal of hydrogen energy, 2016, 41(4): 3004-3014.
[9] 白厚群, 张立炎, 陈启宏, 等. 基于DC/DC电路的燃料电池EIS在线测试系统[J]. 电力电子技术, 2018, 52(12): 49-52.
BAI H Q, ZHANG L Y, CHEN Q H, et al.Fuel cell EIS on-line testing system based on DC/DC circuit[J]. Power electronics, 2018, 52(12): 49-52.
[10] KATAYAMA N, KOGOSHI S.Real-time electrochemical impedance diagnosis for fuel cells using a DC-DC converter[J]. IEEE transactions on energy conversion, 2014, 30(2): 707-713.
[11] 李伟恒, 黄秋安, 杨维明, 等. 基于伪随机二进制序列的阻抗谱快速重构及其在电化学能源领域的应用[J]. 电化学, 2020, 26(3): 370-388.
LI W H, HUANG Q A, YANG W M, et al.Recent advancement in pseudo-random binary sequence signals-based fast reconstruction of impedance spectrum and its applications in electrochemical energy sources[J]. Journal of electrochemistry, 2020, 26(3): 370-388.
[12] YUAN X Z, SONG C J, WANG H J, et al.Electrochemical impedance spectroscopy in PEM fuel cells——Fundamentals and applications[M]. Bärn: Springer Nature Switzeland AG, 2010.
[13] DHIRDE A M, DALE N V, SALEHFAR H, et al.Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy[J]. IEEE transactions on energy conversion, 2010, 25(3): 778-786.
[14] 洪志湖, 朱亚男, 韩莹, 等. 基于SOC滞环控制的燃料电池混合动力系统[J]. 太阳能学报, 2019, 40(1): 268-276.
HONG Z H, ZHU Y N, HAN Y, et al.Fuel cell hybrid system based on hysteretic control of SOC[J]. Acta energiae solaris sinica, 2019, 40(1): 268-276.
[15] 蒋璐. 燃料电池水故障诊断方法研究[D]. 成都: 西南交通大学, 2019.
JIANG L.Research on water fault diagnosis method for fuel cell[D]. Chengdu: Southwest Jiaotong University, 2019.
[16] BOS A V D, KROL R G. Synthesis of discrete-interval binary signals with specified fourier amplitude spectra[J]. International journal of control, 1979, 30(5): 871-884.

基金

中央科研基本业务费(PA2018GDQT0021)

PDF(3562 KB)

Accesses

Citation

Detail

段落导航
相关文章

/