基于线性菲涅尔透镜聚光特性和极轴式跟踪原理,提出一种采用圆弧腔体吸收器的小型菲涅尔定焦线聚光系统。采用蒙特卡洛光线追迹方法与数理统计原理,详细研究太阳赤纬角、太阳时角和腔体内表面吸收率等关键参数对聚光系统光学性能的影响。结果表明,腔体内表面吸收率对光学效率因子的影响最显著,其次为太阳赤纬角、太阳时角。腔体内表面吸收率分别为1.00、0.85、0.75时,系统平均光学效率因子分别为0.950、0.865、0.799。太阳赤纬角对能流均匀性影响最显著,其次为太阳时角、腔体内表面吸收率。在太阳赤纬角分别为0°、8°、16°、23.45°时的平均均匀因子分别为0.507、0.519、0.561、0.612。该系统可减少余弦损失、降低焦线偏移对端部损失的影响。
Abstract
A small-scale Fresnel fixed-focus linear concentrating system using arc-cavity absorber is proposed based on the concentrating characteristics of linear Fresnel lens and the principle of polar tracking. The influence of key parameters such as solar declination angle, solar time angle and internal surface absorptivity of absorber on the optical properties of the concentrating system is studied in detail by using Monte Carlo ray tracing method and the principle of mathematical statistics. The results indicate that the internal surface absorptivity of absorber has the most significant effect on the optical efficiency factor. When the absorptivity is 1.00, 0.85 and 0.75 respectively, the average optical efficiency factor of the system is 0.950, 0.865 and 0.799 respectively. When the sun declination angle is 0°, 8°, 16° and 23.45°, the average uniformity factors are 0.507, 0.519, 0.561 and 0.612, respectively. The system is highly effective on the reduction of the cosine loss as well as the impact of focal line offset on the end loss.
关键词
菲涅尔 /
太阳能集热器 /
光学性能 /
腔体吸收器 /
固定焦线 /
滑移调节
Key words
Fresnel /
solar collectors /
optical properties /
cavity absorber /
fixed-focus /
slip regulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GHARBI N E, DERBAL H, BOUAICHAOUI S, et al.A comparative study between parabolic trough collector and linear Fresnel reflector technologies[J]. Energy procedia, 2011, 6: 565-572.
[2] CANAVARRO D, CHAVES J, COLLARES-PEREIRA M.A novel Compound Elliptical-type Concentrator for parabolic primaries with tubular receiver[J]. Solar energy, 2016, 134: 383-391.
[3] BARBÓN A, BARBÓN N, BAYÓN L, et al. Optimization of the length and position of the absorber tube in small-scale linear Fresnel concentrators[J]. Renewable energy, 2016, 99: 986-995.
[4] LI M, XU C, JI X, et al.A new study on the end loss effect for parabolic trough solar collectors[J]. Energy, 2015, 82: 382-394.
[5] YANG M, ZHU Y Z, TAYLOR R A.End losses minimization of linear Fresnel reflectors with a simple, two-axis mechanical tracking system[J]. Energy conversion and management, 2018, 161: 284-293.
[6] 戴静, 郑宏飞, 冯朝卿. 三运动复合线性菲涅耳反射式太阳聚光系统的性能研究[J]. 北京理工大学学报, 2016, 36(5): 464-469, 479.
DAI J, ZHENG H F, FENG C Q.Performance of linear fresnel reflector system combined three- movement[J]. Transactions of Beijing Institute of Technology, 2016, 36(5): 464-469, 479.
[7] 陈维, 李戬洪. 太阳能利用中的跟踪控制方式的研究[J]. 能源工程, 2003(3): 18-21.
CHEN W, LI J H, Research on the tracker controller methodologies in utilization of solar energy[J]. Energy engineering, 2003(3): 18-21.
[8] 陈晓勇, 郑科科. 对建筑日照计算中太阳赤纬角公式的探讨[J]. 浙江建筑, 2011, 28(9): 6-8.
CHEN X Y, ZHENG K K Discussions on the formula of declination angle in building sunshine calculation[J]. Zhejiang construction, 2011, 28(9): 6-8.
[9] WANG H, HUANG J, SONG M J, et al.Simulation and experimental study on the optical performance of a fixed-focus fresnel lens solar concentrator using polar-axis tracking[J]. Energies, 2018, 11(4): 887.
[10] 王海, 黄金, 胡艳鑫, 等. 极轴式定焦点菲涅尔聚光器设计及焦斑位置偏差研究[J]. 太阳能学报, 2019, 40(3): 782-790.
WANG H, HUANG J, HU Y X, et al.Design of fixed-focus Fresnel lens solar concentrator using polar tracking and study on focal spot position deviation[J]. Acta energiae solaris sinica, 2019, 40(3): 782-790.
[11] WANG H, HUANG J, SONG M, et al.Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker[J]. Applied energy, 2019, 237: 70-82.
[12] 丁林, 王军, 蒋川, 等. 中温槽式集热器的聚光特性模拟及误差分析[J]. 太阳能学报, 2019, 40(10): 2755-2762.
DING L, WANG J, JIANG C, et al.Simulation for condensation characteristics and error analysis of medium temperature parabolic trough collector[J]. Acta energiae solaris sinica, 2019, 40(10): 2755-2762.
[13] WANG H, HUANG J, SONG M J, et al.Simulation and experimental study on the optical performance of a fixed-focus Fresnel lens solar concentrator using polar-axis tracking[J]. Energies, 2018, 11(4): 887.
[14] 何雅玲, 王坤, 杜保存, 等. 聚光型太阳能热发电系统非均匀辐射能流特性及解决方法的研究进展[J]. 科学通报, 2016, 61(30): 3208-3237, 3289-3290.
HE Y L, WANG K, DU B C, et al. Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: A review[J]. Chinese science bulletin, 2016, 61(30): 3208-3237, 3289-3290.
[15] 颜健, 彭佑多, 程自然. 可实现均匀能流分布的太阳能碟式/三角形腔体接收系统的光学特性研究[J]. 太阳能学报, 2020, 41(7): 202-213.
YAN J, PENG Y D, CHENG Z R, et al.Optical characteristics of solar dish concentrator/triangular cavity receive system with uniform flux distribution[J]. Acta energiae solaris sinica, 2020, 41(7): 202-213.
基金
国家自然科学基金(51876044); 广东省基础与应用基础研究基金(2019A1515110442); 广东省普通高校青年创新人才类项目(2019KQNCX173); 可再生能源电力技术湖南省重点实验室基金(2019ZNDL008)