相变蓄热水箱可有效调节集热器和负载端之间供求不匹配的矛盾,设计了环形布水器进水结构和蓄热水箱,并搭建相变蓄热水箱性能测试平台,对比直进型蓄热水箱和环形布水器蓄热水箱的温度分层,探究孔隙率、进水流速和变温进水等变量下相变蓄热水箱的热分层和相变球的释热性能。实验研究表明:环形布水器能有效抑制进水水流对温度场的扰动,保持良好的温度分层,使相变球逐层放热,增大相变球与传热流体(HTF)的温差,提高释热效率,保证高温水能够源源不断地提供给用户端;孔隙率越小分层效果越好;流速越大分层效果越差,但是释热效率有所提高;变温进水比恒温进水,释热时间延长约40%。
Abstract
The phase change heat storage tank can effectively adjust the contradiction between the supply and demand of the collector and the load end. The water inlet structure and heat storage tank of the annular water distributor are designed, and the performance test platform of the phase change heat storage tank is built. The temperature stratification of the direct type heat storage tank and the heat storage tank of the annular water distributor are compared, and the thermal stratification of the phase change heat storage tank and the heat release performance of the phase change ball under the variables of porosity, water inlet velocity and variable temperature water inlet are explored. The experimental research shows that the annular water distributor can effectively suppress the disturbance of the inlet water flow to the temperature field, maintain good temperature stratification, make the phase change ball release heat layer by layer, increase the temperature difference between the phase change ball and the heat transfer fluid, improve the heat release efficiency, and ensure that the high-temperature water can be continuously provided to the user; The smaller the porosity, the better the delamination effect; The higher the flow velocity is, the worse the stratification effect is, but the heat release efficiency is improved; The heat release time of variable temperature influent is about 40% longer than that of constant temperature influent.
关键词
热分层 /
释能效率 /
相变蓄热 /
蓄热水箱 /
环形布水器 /
孔隙率
Key words
thermal stratification /
discharging efficiency /
phase change heat storage /
heat storage tank /
annular water distributor /
porosity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CANTER N.New power source: Extracting energy from the environment[J]. Tribology and lubrication technology, 2020, 76(8): 12-13.
[2] 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.
WU J, LONG X F.Research progress of solar thermochemical energy storage[J]. Chemical industry and engineering progress, 2014, 33(12): 3238-3245.
[3] 田松峰, 郁建雄, 刘佳星, 等. 球式相变蓄热装置传热过程数值模拟与优化[J]. 电力科学与工程, 2019, 35(6): 64-70.
TIAN S F, YU J X, LIU J X, et al.Numerical simulation and optimization of heat transfer process of spherical phase change heat storage device[J]. Electric power science and engineering, 2019, 35(6): 64-70.
[4] 李传, 孙泽, 丁玉龙. 高温填充床相变储热球的储热特性[J]. 储能科学与技术, 2013, 2(5): 480-485.
LI C, SUN Z, DING Y L.Heat storage characteristics of high temperature packed bed phase change heat storage ball[J]. Energy storage science and technology, 2013, 2(5): 480-485.
[5] 张伟. 基于球形封装的相变储热供暖装置蓄释热性能的研究[D]. 包头: 内蒙古科技大学, 2020.
ZHANG W.Research on heat storage and release performance of phase change heat storage heating device based on spherical packaging[D]. Baotou: Inner Mongolia University of Science and Technology, 2020.
[6] 周利强, 张华, 王子龙, 等. 相变蓄热水箱分层特性的实验研究[J]. 制冷学报, 2020, 41(1): 62-67.
ZHOU L Q, ZHANG H, WANG Z L, et al.Experimental study on the stratification characteristics of phase change hot water storage tanks[J]. Journal of refrigeration, 2020, 41(1): 62-67.
[7] 王子龙, 张华, 王崇愿, 等. 新型进水结构对太阳能分层水箱热特性影响的研究[J]. 热能动力工程, 2016, 31(5): 124-128, 158.
WANG Z L, ZHANG H, WANG C Y, et al.Research on the influence of new water inlet structure on the thermal characteristics of solar stratified water tanks[J]. Journal of engineering for thermal energy and power, 2016, 31(5): 124-128, 158.
[8] AFSHAN M E, SELVAKUMAR A S, VELRAJ R, et al.Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications[J]. Renewable energy, 2020, 148: 876-888.
[9] LOEM S, DEETHAYAT T, ASANAKHAM A, et al.Thermal characteristics on melting/solidification of low temperature PCM balls packed bed with air charging/discharging[J]. Case studies in thermal engineering, 2019, 14: 100431.
[10] GHAJAR A J, ZURIGAT Y H.Numerical study of the effect of inlet geometry on stratification in thermal energy storage[J]. Numerical heat transfer applications, 1991, 19(1): 65-83.
[11] DAVIDSON J H, ADAMS D A, MILLER J A.Coefficient to characterize mixing in solar water storage tanks[J]. Journal of solar energy engineering, 1994, 116(2): 94-99.
[12] 史玉凤, 刘红, 孙文策. 多孔介质有效导热系数的实验与模拟[J]. 四川大学学报(工程科学版), 2011, 43(3): 198-203.
SHI Y F, LIU H, SUN W C.Experiment and simulation of the effective thermal conductivity of porous media[J]. Journal of Sichuan University(engineering science edition), 2011, 43(3): 198-203.
基金
内蒙自治区科技创新引导奖励资金(KCBJ2018031); 内蒙自治区科技创新引导奖励资金(2017CXYD-2)