为降低多孔介质高温吸热器的辐射散热损失,设计一种玻璃套管-多孔介质双层吸热芯。采用实验测量和蒙特卡洛数值模拟方法,定量分析双层吸热芯的多光谱热辐射传输特性。结果表明,绝大多数太阳辐射外热源在双层吸热芯的内部被吸收(多孔介质入口段)。当工作温度为1000 K时,双层吸热芯的太阳光吸收比与自身红外辐射发射比之比达到约2.0,其辐射热效率较单层多孔介质吸热芯高约30%。
Abstract
In order to reduce the re-radiation of the solar volumetric absorbers, a double layer absorbers that was made up of multiple tubes and the porous was proposed. The thermal radiation performances of the double layer receiver were carried out by experiment test and the Monte Carlo method (MCM). Results show that the most of the solar thermal resource is absorbed by the inlet section of the porous. When the working temperature is equal to 1000 K, the ration of the solar absorption and the emission of the double layer is up to 2.0. Moreover, the radiation thermal efficiency of the double layer receiver is about 30% higher than that of the monolayer porous receiver.
关键词
太阳能吸热器 /
多孔介质 /
蒙特卡洛法 /
辐射传输 /
热效率
Key words
solar absorbers /
porous materials /
MCM /
radiation transfer /
radiation thermal efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ÁVILA-MARIN A L. Volumetric receivers in solar thermal power plants with central receiver system technology: A review[J]. Solar energy, 2011, 85(5): 891-910.
[2] YADAV D, BANERJEE R.A review of solar thermochemical processes[J]. Renewable and sustainable energy reviews, 2016, 54: 497-532.
[3] KRIBUS A, GRAY Y, GRIJNEVICH M, et al.The promise and challenge of solar volumetric absorbers[J]. Solar energy, 2014, 110: 463-481.
[4] FEND T, PITZ-PAAL R, REUTTER O, et al.Two novel high-porosity materials as volumetric receivers for concentrated solar radiation[J]. Solar energy materials and solar cells, 2004, 84: 291-304.
[5] CHEN X, XIA X L, MENG X L, et al.Thermal performance analysis on a volumetric solar receiver with double-layer ceramic foam[J]. Energy conversion and management, 2015, 97: 282-289.
[6] ZAVERSKY F, ALDAZ L, SÁNCHEZ M, et al. Numerical and experimental evaluation and optimization of ceramic foam as solar absorber-single-layer vs multi-layer configurations[J]. Applied energy, 2018, 210: 351-375.
[7] DU S, REN Q L, HE Y.Optical and radiative properties analysis and optimization study of the gradually-varied volumetric solar receiver[J]. Applied energy, 2017, 207: 27-35.
[8] COQUARD R, BAILLIS D, RANDRIANALISOA J.Homogeneous phase and multi-phase approaches for modeling radiative transfer in foams[J]. International journal of thermal sciences, 2011, 50(9): 1648-1663.
[9] LIU D, LI Q, XUAN Y M.Reticulated porous volumetric solar receiver designs guided by normal absorptance and hemispherical volumetric emittance investigations[J]. International journal of heat and mass transfer, 2017, 114: 1067-1071.
[10] CUNSOLO S, OLIVIERO M, HARRIS W M, et al.Monte carlo determination of radiative properties of metal foams: Comparison between idealized and real cell structures[J]. International journal of thermal sciences, 2015, 87: 94-102.
[11] CUNSOLO S, COQUARD R, BAILLIS D, et al.Radiative properties of irregular open cell solid foams[J]. International journal of thermal sciences, 2017, 17: 77-89.
[12] 谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算——计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
TAN H P, XIA X L, LIU L H, et al.Numerical calculation of infrared radiation characteristics and transmission-computational thermal radiation[M]. Harbin: Harbin Institute of Technology Press, 2006.
[13] ZHANG S D, SUN C, SUN F X, et al.Spectral properties of an UV fused silica within 0.8 to 5 μm at elevated temperatures[J]. Infrared physical technology, 2017, 85: 293-299.
基金
国家自然科学基金(51806037; 52176181)