针对风电齿轮箱高速级齿轮传动系统齿根裂纹扩展程度识别难题,该文提出基于广义BP神经网络(GBPNN)的齿轮传动系统齿根裂纹故障模式识别方法。构建计及齿根裂纹扩展方向与路径的齿轮副时变啮合刚度解析模型及风电齿轮箱高速级齿轮-轴-轴承耦合的多自由度动力学模型,分析不同齿根裂纹扩展程度对系统振动特征的影响规律,并利用GBPNN对齿根裂纹故障模式进行识别。研究结果表明:齿轮故障振动周期冲击信号将沿着传动轴进行传递,但传动轴柔性会使其幅值产生明显的衰减;利用GBPNN并结合各轴段节点处振动加速度的峰值、峭度、统计矩阵参数以及方差,可有效实现对齿轮齿根裂纹故障模式的识别。
Abstract
To solve the problem that it is difficult to identify tooth crack in the high-speed stage of wind turbine transmission, this paper presents a method of tooth crack identification based on GBPNN. An analytical model of time-varying mesh stiffness considering the propagation path and direction of root cracks was constructed, and a multi-degree-of-freedom dynamic model of wind turbine high-speed stage were considered to establish. This paper analyzes the influence of root crack on dynamic characteristics, and the failure mode is identified by GBPNN. The results show that the gear fault vibration periodic shock signals will be transmitted along the transmission shaft, but the flexibility of transmission shaft will cause obvious attenuation of its amplitude; by using GBPNN and combining the peak, kurtosis, statistical matrix parameters and variance of the vibration acceleration at each shaft node, the gear root crack pattern can be effectively identified.
关键词
风电机组齿轮箱 /
动力学模型 /
故障识别 /
时变啮合刚度 /
齿根裂纹 /
广义BP神经网络
Key words
wind turbine gearbox /
dynamic models /
fault diagnosis /
time varying mesh stiffness /
tooth root crack /
generalized BP neural network(GBPNN)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈特. 含故障风电齿轮箱动力学特性理论分析与实验研究[D]. 杭州: 浙江理工大学, 2019.
CHEN T.Theoretical analysis and experimental study on dynamic characteristics of fault wind turbine gearbox[D]. Hangzhou: Zhejiang Sci-Tech University, 2019.
[2] WU S Y, ZUO M J, PAREY A.Simulation of spur gear dynamics and estimation of fault growth[J]. Journal of sound & vibration, 2008, 317(3-5): 608-624.
[3] CHAARI F, FAKHFAKH T, HADDAR M.Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking[J]. Journal of failure analysis and prevention, 2006, 6(2): 73-78.
[4] CHEN Z G, SHAO Y M.Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering failure analysis, 2011, 18: 2149-2164.
[5] 万志国, 訾艳阳, 曹宏瑞,等. 时变啮合刚度算法修正与齿根裂纹动力学建模[J]. 机械工程学报, 2013(11): 157-164.
WAN Z G, ZI Y Y, CAO H R, et al.Time-varying mesh stiffness algorithm correction and tooth crack dynamic modeling[J]. Journal of mechanical engineering, 2013(11): 157-164.
[6] MA J F, LIU T T, ZHA C Q, et al.Simulation research on the time-varying meshing stiffness and vibration response of micro-cracks in gears under variable tooth shape parameters[J]. Applied sciences, 2019, 9(7): 1512.
[7] 雷亚国, 罗希, 刘宗尧, 等. 行星轮系动力学新模型及其故障响应特性研究[J]. 机械工程学报, 2016, 52(13): 111-122.
LEI Y G, LUO X, LIU Z Y, et al.A new dynamic model of planetary gear sets and research on fault response characteristics[J]. Journal of mechanical engineering, 2016, 52(13): 111-122.
[8] MA H, FENG R J, PANG X, et al.Effects of tooth crack on vibration responses of a profile shifted gear rotor system[J]. Journal of mechanical science & technology, 2015, 29(10): 4093-4104.
[9] MA H, SONG R Z, PANG X, et al.Time-varying mesh stiffness calculation of cracked spur gears[J]. Engineering failure analysis, 2014, 44: 179-194.
[10] BRIE D, TOMCZAK M, OEHLMANN H, et al.Gear crack detection by adaptive amplitude and phase demodulation[J]. Mechanical systems & signal processing, 1997, 11(1): 149-167.
[11] 谢锋云. 基于广义区间的加工过程监测中不确定性研究[D]. 武汉: 华中科技大学, 2014.
XIE F Y.A dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in engineering[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[12] 李润方, 王建军. 齿轮系统动力学[M]. 北京: 科学出版社, 1997.
LI R F, WANG J J.Dynamics of gear system[M]. Beijing:Science Press, 1997.
[13] LIANG X H, ZUO M J, PANDEY M.Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set[J]. Mechanism & machine theory, 2014, 76: 20-38.
[14] 马辉, 逄旭, 宋溶泽, 等. 基于改进能量法的直齿轮时变啮合刚度计算[J]. 东北大学学报(自然科学版), 2014, 35(6): 866.
MA H, PANG X, SONG R Z, et al.Time-varying mesh stiffness calculation of spur gears based on improved energy method[J]. Journal of Northeastern University (natural science edition), 2014, 35(6): 866.
[15] KAHRAMAN A.Natural modes of planetary gear trains[J]. Journal of sound & vibration, 1994, 173(1): 125-130.
[16] TAN J J, ZHU C C, SONG C S, et al.Effects of flexibility and suspension configuration of main shaft on dynamic characteristics of wind turbine drivetrain[J]. Chinese journal of mechanical engineering, 2019, 32(2): 224-238.
[17] TAN J J, ZHU C C, SONG C S, et al.Dynamic modeling and analysis of wind turbine drivetrain considering platform motion[J]. Mechanism and machine theory, 2019, 140: 781-808.
[18] ZHANG Y M, WANG Q B, MA H, et al.Dynamic analysis of three-dimensional helical geared rotor system with geometric eccentricity[J]. Journal of mechanical science & technology, 2013, 27: 3231-3242.
[19] RUMELHART D E, MC-Clelland J L. Parallel distributed processing: Explorations in the microstructure of cognition: Foundations[M/OL]. volume 1. MIT Press . https://direct.mit.edu/books/book/4424/Parallel. 1986.
[20] CHEN H X, LU Y J, TU L.Fault identification of gearbox degradation with optimized wavelet neural network[J]. Shock & vibration, 2015, 20(2): 247-262.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab oratory (NREL), Golden, CO(United States), 2009.
基金
国家重点研发计划(2018YFB1501300); 中国博士后科学基金面上资助项目(2020M673125); 中央高校基本科研业务费(2020CDCGJX026)