采用基于升力线理论的自由尾迹模拟模型,耦合了Leishman-Beddoes(LB)动态失速模型和模拟支架损失的半经验公式,编制H型垂直轴风轮计算程序,对不同直径、不同实度的风轮进行气动性能模拟。为了检测模型对H型风轮输出计算的准确性,选取2种不同实度(分别为0.13和0.48)的H型风力机进行了对比分析。结果表明,当尖速比小于4时,动态失速影响较为明显。考虑支架损失的计算结果明显优于未考虑支架损失的计算结果,支架损失总体上随尖速比的增大而增大,2台风力机对应的最大支架损失分别高达60%和35.5%。考虑动态失速效应和支架损失的计算模型能较为准确地估算风轮实度较小的H型风轮的输出,但对于实度较大的H型风轮,其计算准确度有待进一步提高。
Abstract
This paper presents the results of the power performance prediction of H-shaped vertical axis wind turbines using a lifting-line free vortex wake model cooperating with the Leishman-Beddoes (LB) dynamic stall model and semi-empirical equations accounting for strut loss. The power performance curves of two turbines with different diameter and solidity are compared with measurements. It is shown that the dynamic stall effect is obvious when tip speed ratio is less than 4. In general, the strut loss increases with tip speed ratio, the maximum value is 60% and 35% respectively for two turbines. For H-shaped wind turbines with low solidity, the model can give a good prediction of the power performance, while for H-shaped wind turbines with high solidity, the model improved.
关键词
垂直轴风力机 /
自由尾迹模型 /
支架损失 /
动态失速模型
Key words
vertical axis wind turbines /
free vortex wake model /
strut loss /
dynamic stall model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PARASCHIVOIU I. Wind turbine design: with emphasis on darrieus concept[M]. Chapter 6. Montreal: Presses Internationales Polytechnique, 2002,.
[2] HAUPTMANN S, BULK M, SCHÖN L, et al. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines[J/OL]. Journal of physics: Conference Series, The Science of Making Torque from Wind ,IOP Publishing, 2014. https://iopscience.iop.org/article/10.1088/1742-6596/555/1/012050/pdf.
[3] STRICKLAND J H, WEBSTER B T, Nguyen T.A vortex model of the Darrieus turbine: An analytical and experimental study[J]. Journal of fluids engineering, 1979, 101(4): 500-505.
[4] BHAGWAT M J, LEISHMAN J G.Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms[J]. Journal of the American helicopter society, 2001, 46(1): 59-71.
[5] GUPTA S.Development of a time-accurate viscous Lagrangian vortex wake model for wind turbine applications[D]. College Park : University of Maryland, 2006.
[6] WInDS, Wake induced dynamics simulator, software package[EB/OL]. https://www.umass.edu/windenergy/research/software/WInDS.2020-10-20.
[7] FERREIRA C S.The near wake of the VAWT[D]. Delft: Aerospace engineering, Delft University of Technology, 2009.
[8] PEREIRA R, SCHEPERS G, PAVEL M D.Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data[J]. Wind energy, 2013, 16(2): 207-219.
[9] LEISHMAN J G, BEDDOES T S.A semi-empirical model for dynamic stall[J]. Journal of the American helicopter society, 1989, 34(3):3-17.
[10] Aerodyn(A design-code for aeroelastic simulations of horizontal axis wind turbine configurations)[EB/OL]. https://nwtc.nrel.gov/AeroDyn.2020-10-25.
[11] PIERCE K, HANSEN A C.Prediction of wind turbine rotor loads using the Beddoes-Leishman model for dynamic stall[J]. Journal of solar energy engineering, 1995, 117(3): 200-204.
[12] 许波峰, 刘冰冰, 冯俊恒,等. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5):1530-1537.
XU B F, LIU B B, FENG J H, et al.Influence of vortex core size on aerodynamic calculation of wind turbine in free vortex wake method[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(5): 1530-1537.
[13] HOERNER S F. Fluid dynamic drag[M]. Midland Park:[S.N.].1965, 6/1-6/6.
[14] SHELDAHL R E, KLIMAS P C, FELTZ L V.Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades[R]. Albuquerque: Sandia national laboratories, 1980, 40-45.
[15] KJELLIN J, BÜLOW F, ERIKSSON S, et al. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine[J]. Renewable energy, 2011, 36(11): 3050-3053.
[16] MC-LAREN K, TULLIS S, ZIADA S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine[J]. Wind energy, 2012, 15, (3): 349-361.
[17] MCLAREN K.A numerical and experimental study of unsteady loading of high solidity vertical axis wind turbines[D]. Hamilton: Mechanical Engineering, McMaster University, 2011.
[18] SIDDIQUI M S, DURRANI N, AKHTAR I.Numerical study to quantify the effects of struts and central hub on the performance of a three dimensional vertical axis wind turbine using sliding mesh[C]//ASME 2013 Power Conference, Boston, MD, USA, 2013.
基金
湖北省教育厅科学技术研究计划(B2018057); 武汉工程大学科学研究基金(16QD35)