风浪激励下的海上风力机振动控制

谢双义, 何娇, 张成林, 金鑫

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 270-275.

PDF(3099 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3099 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 270-275. DOI: 10.19912/j.0254-0096.tynxb.2020-1271

风浪激励下的海上风力机振动控制

  • 谢双义1, 何娇2, 张成林3,4, 金鑫5
作者信息 +

VIBRATION CONTROL OF OFFSHORE WIND TURBINES UNDER WIND AND WAVE EXCITATIONS

  • Xie Shuangyi1, He Jiao2, Zhang Chenglin3,4, Jin Xin5
Author information +
文章历史 +

摘要

该文建立考虑桩-土耦合作用的单桩式海上风力机整机多体动力学模型,结合水动力和空气动力,借助Matlab/Simulink搭建风力机的联合仿真模型。对安装于机舱内的单调谐质量阻尼器(STMD)和多重调谐质量阻尼器(MTMD)系统进行设计,并在运行工况和泊机工况下进行仿真分析。研究表明,相比于正常运行工况,泊机工况下的调谐质量阻尼器(TMD)振动抑制性能更优,对塔基前后弯矩标准偏差有着最优的控制效果,且MTMD系统中TMD的数量与系统振动抑制性能存在非线性关系。

Abstract

This paper establishes a multi-body dynamics model of a complete monopile offshore wind turbine considering the pile-soil interaction effect. A co-simulation model is then built. Finally, a single-TMD (STMD) system and a multiple-TMD (MTMD) system installed in the nacelle are designed and evaluated under the normal operation and the parked cases. The results show that the TMD systems exhibit better performance under the parked case than under the normal operation case. The standard deviations of the tower-base bending moments are suppressed more significantly than other evaluation indices. Furthermore, it is found that there is nonlinear relationship between the TMD number and the performance of MTMD.

关键词

海上风电 / 振动控制 / 风力机 / 结构动力学 / 风浪联合激励

Key words

offshore wind power / vibration control / wind turbines / structural dynamics / wind-wave excitation

引用本文

导出引用
谢双义, 何娇, 张成林, 金鑫. 风浪激励下的海上风力机振动控制[J]. 太阳能学报. 2022, 43(7): 270-275 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1271
Xie Shuangyi, He Jiao, Zhang Chenglin, Jin Xin. VIBRATION CONTROL OF OFFSHORE WIND TURBINES UNDER WIND AND WAVE EXCITATIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 270-275 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1271
中图分类号: TK83   

参考文献

[1] 刘德顺, 刘子其, 戴巨川, 等. 海上漂浮式风电机组风波载荷计算与分析[J]. 中国机械工程, 2016, 27(1): 32-40, 45.
LIU D S, LIU Z Q, DAI J C, et al.Calculation and analysis of wind and wave loads of offshore floating wind turbines[J]. China mechanical engineering, 2016, 27(1): 32-40, 45.
[2] 徐建源, 祝贺. 风波联合作用海上风力机动态特性分析[J]. 中国电机工程学报, 2010, 30(5): 120-124.
XU J Y, ZHU H.Dynamic characteristic analysis of offshore wind turbine under combined wind and wave action[J]. Proceedings of the CSEE, 2010, 30(5): 120-124.
[3] 穆安乐, 王超, 刘宏昭, 等. 利用调频质量阻尼器结构实现海上漂浮式风力机的稳定性控制[J]. 中国电机工程学报, 2013, 33(35): 89-94, 15.
MU A L, WANG C, LIU H Z, et al.Stability control of floating wind turbines with tuned mass damper structure[J]. Proceedings of the CSEE, 2013, 33(35): 89-94, 15.
[4] 许子非, 叶柯华, 李春, 等. 海冰载荷作用下海上风力机 TMD减振研究[J]. 热能动力工程, 2018, 33(10): 127-134.
XU Z F, YE K H, LI C, et al.Vibration reduction analysis of offshore wind turbine with TMD system[J]. Journal of engineering for thermal energy and power, 2018, 33(10): 127-134.
[5] FITZGERALD B, BASU B.Structural control of wind turbines with soil structure interaction included[J]. Engineering structures, 2016, 111: 131-151.
[6] 黄致谦, 周蕊, 丁勤卫, 等. 基于MTMD 的 Barge 型漂浮式风力机稳定性控制研究[J]. 热能动力工程, 2018, 33(6): 130-136.
HUANG Z Q, ZHOU R, DING Q W, et al.Study of the control over the stability of a barge type floating wind turbine based on the multiple tuned mass dampers (MTMD)[J]. Journal of engineering for thermal energy and power, 2018, 33(6): 130-136.
[7] ZUO H R, BI K M, HAO H.Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards[J]. Engineering structures, 2017, 141: 303-315.
[8] GHASSEMPOUR M, FAILLA G, ARENA F.Vibration mitigation in offshore wind turbines via tuned mass damper[J]. Engineering structures, 2019, 183: 610-636.
[9] ROSALES-GONZALEZ M L. Seismic analysis of monopile-based offshore wind turbines including aero-elasticity and soil-structure interaction[D]. Delft University of Technology(TU Delft), 2016.
[10] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Technical Report NREL/TP-500-38060, 2009.
[11] INTEC GmbH.Simpack v9.10 reference manual[M]. Wessling: INTEC GmbH, 2016.
[12] LI Y, CASTRO A M, MARTIN J E, et al.Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics[J]. Renewable energy, 2017, 101: 1037-1051.
[13] JIN X, LI L, JU W B, et al.Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines[J]. Renewable energy, 2016, 90: 336-351.
[14] BUSH E, MANUEL L.Foundation models for offshore wind turbines[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.
[15] CARSWELL W, JOHANSSON J, LOVHOLT F, et al.Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable energy, 2015, 80: 724-736.
[16] SUN C, JAHANGIRI V.Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper[J]. Mechanical systems and signal processing, 2018, 105: 338-360.
[17] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. Technical Report NREL/TP-500-41958 2007.
[18] GHOSH A, BASU B.A closed-form optimal tuning criterion for TMD in damped structures[J]. Structural control and health monitoring, 2007, 14: 681-692.
[19] IEC. Wind turbines.IEC 61400-3 Part 3: Design requirements for offshore wind turbines[M]. Geneva: International Electrotechnical Commission, 2009.

基金

重庆理工大学科研启动基金(0119200290); 重庆市教育委员会科学技术研究计划(KJQN202101133); 重庆理工大学国家自然科学基金项目培育计划(2021PYZ14); 国家自然科学基金面上项目(51975066)

PDF(3099 KB)

Accesses

Citation

Detail

段落导航
相关文章

/