采用CFD方法,以NH1500三叶片大型水平轴风力机为研究对象,研究额定风速剪切来流下的塔影效应对水平轴风力机叶片和风轮非定常气动载荷的影响。结果表明:剪切来流下,叶片和风轮的气动载荷均呈余弦变化规律,塔影效应的主要影响叶片方位角范围为160°~210°,且该范围不随风剪切指数的变化而变化。相同风剪切指数下,塔影效应对叶片和风轮气动载荷的均方根影响较小,对其波动影响较大。当风剪切指数从0.12增至0.30时,塔影效应下,叶片气动载荷的均方根减小,推力和转矩的波动幅度增大,偏航力矩和倾覆力矩的波动幅度减小;风轮推力和转矩的均方根减小,波动幅度变化较小,而倾覆力矩和偏航力矩的均方根增大,且波动幅度也增大。
Abstract
A CFD method is used to study the influence of tower shadow effect on the non-constant aerodynamic loads of the horizontal axis wind turbine blades and wind turbine wheels under shear incoming flow at rated wind speed, using the NH1500 three-blade large horizontal axis wind turbine as the research object. The results show that: the aerodynamic loads of both the blade and the wind turbine under shear incoming flow show a cosine variation law, and the main influence of the tower shadow effect on the blade azimuth range is 160°-210°, and the range does not vary with the wind shear index. Under the same wind shear index, the tower shadow effect has a smaller effect on the root mean square of the aerodynamic loads of the blade and wind turbine, and a larger effect on its fluctuation. When the wind shear index increases from 0.12 to 0.30, the root mean square of blade aerodynamic loads decreases, the fluctuation of thrust and torque increases, and the fluctuation of yaw moment and overturning moment decreases under the tower shadow effect; the root mean square of wind turbine thrust and torque is small and the fluctuation is less,while the root mean square of yaw moment and overturning moment increases and the fluctuation also increases.
关键词
风力机 /
气动载荷 /
计算流体力学 /
风剪切 /
塔影效应 /
叶片
Key words
wind turbines /
aerodynamic loads /
computational fluid dynamics /
wind shear /
tower shadow effect /
blades
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李耀华, 孔力. 发展太阳能和风能发电技术加快推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-433
LI Y H,KONG L.Develop solar and wind power generation technologies to accelerate my country's energy transition[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 426-433
[2] FADAEINEDJAD R, MOSCHOPOULOS G,MOALLEM M.The impact of tower shadow, yaw error, and wind shears on power quality in a wind-diesel system[J]. IEEE transactions on energy conversion, 2009, 24(1): 102-111.
[3] 孔屹刚, 顾浩, 王杰, 等. 基于风剪切和塔影效应的大型风力机载荷分析与功率控制[J]. 东南大学学报(自然科学版), 2010, 40(S1): 228-233.
KONG Y G, GU H,WANG J.Load analysis and power control of large wind turbine based on wind shear and tower shadow[J]. Journal of Southeast University(natural science edition), 2010, 40(S1): 228-233.
[4] DAI J C, HU Y P, LIU D S, et al.Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model[J]. Renewable energy, 2011, 36(3): 1095-1104.
[5] REHMAN S, AL-ABBADI N M. Wind shear coefficients and their effect on energy production[J]. Energy conversion & management, 2005, 46(15): 2578-2591
[6] SEZER-UZOL N, UZOL O.Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor[J]. Wind energy, 2013, 16: 1-17.
[7] ZAHLE F, SORENSEN N N, JOHANSEN J.Wind turbine rotor-tower interaction using an incompressible overset grid method[J]. Wind energy, 2010, 12(6): 594-619.
[8] ZHANG J P, GUO L,WU H L, et al.The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction[J]. Ocean engineering, 2014, 84: 14-19.
[9] 张旭耀, 杨从新, 李寿图, 等. 风剪切来流下风力机流场特性与风轮气动载荷研究[J]. 太阳能学报, 2019, 40(11): 3281-3288.
ZHANG X Y, YANG C X, LI S T.Research on flow field characteristics of wind turbine and rotor aerodynamic load under wind shear[J]. Acta energiae solaris sinica, 2019, 40(11): 3281-3288.
[10] EMEKSIZ C, CETIN T.In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics[J]. Sustainable energy technologies and assessments, 2019, 35(10): 148-159.
[11] DOLAN D S L,LEHN P W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow[J]. IEEE transactions on energy conversion, 2006, 21(3): 717-724.
[12] ARGYROPOULOS C D, MARKATOS N C.Recent advances on the numerical modelling of turbulent flows[J].Applied mathematical modelling, 2015, 39(2): 693-732.
[13] 胡丹梅, 潘扬, 张建平. 大型水平轴风力机塔影效应特性研究[J]. 动力工程学报, 2018, 38(3): 237-245.
HU D M, PAN Y, ZHANG J P.Study on shadow effect characteristics of large horizontal axis wind turbine[J]. Journal of power engineering, 2018, 38(3): 237-245.
[14] 张建梅. 机舱和塔影效应对水平轴风力机气动特性的影响[D]. 兰州: 兰州理工大学, 2020.
ZHANG J M.Influence of nacelle and tower shadow effect on aerodynamic Characteristics of horizontal axis wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2020.
基金
国家自然科学基金(12062012); 甘肃省风力机研究专项基金(071904)