基于NCPSO的微网群优化调度策略研究

陈友芹, 蒋炯, 殷展翔, 潘庭龙

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 477-483.

PDF(1616 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1616 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 477-483. DOI: 10.19912/j.0254-0096.tynxb.2020-1287

基于NCPSO的微网群优化调度策略研究

  • 陈友芹, 蒋炯, 殷展翔, 潘庭龙
作者信息 +

RESEARCH ON OPTIMAL SCHEDULING STRATEGY OF MICROGRID CLUSTERS BASED ON NCPSO

  • Chen Youqin, Jiang Jiong, Yin Zhanxiang, Pan Tinglong
Author information +
文章历史 +

摘要

传统的粒子群优化(PSO)算法因在微网优化中不易达到全局最优而导致微网运行成本过高,该文采用小生境混沌粒子群优化(NCPSO)算法对混合微网群的运行策略进行协同优化,以实现区域微网经济性最优、环境治理成本最低、风光等可再生能源利用率高等目的。根据所提出的调度策略,建立的优化调度模型包括动态电价下的负荷模型、经济收益模型以及成本模型等,使用NCPSO算法得到多微网在一个周期内的最佳运行状态,实现微网群系统综合能源的互动调控、空间互补。通过分析微网群的功率交互动态、可控能源的发电以及储能电池的荷电状态等,验证微网群的电力负荷响应动态电价,表明了NCPSO算法优化微网群运行的优越性、有效性。

Abstract

The ordinary particle swarm optimization(PSO) algorithm is quite difficult to reach the target of global optimum in the process of optimizing microgrids, which leads to the high operation cost of microgrid. In this paper, the niche chaotic particle swarm optimization(NCPSO) algorithm was used to collaboratively optimize the operation strategy of hybrid microgrid clusters, so as to achieve the goal of regional microgrid economic optimization, environmental governance cost minimum, high utilization rate of renewable energy such as wind and solar energy. On the basis of the expected dispatching tactics, the best dispatching model including load model, economic benefit model and cost model under dynamic electricity price was established. The optimal operation state of multi microgrid in one cycle is obtained by using NCPSO algorithm, o as to realize the interactive regulation and spatial complementarity of comprehensive energy in microgrid clusters system. By analyzing the power interaction dynamics of microgrid groups, the generation of controllable energy and the state of charge of energy storage battery, the power load responding dynamic price of microgrid clusters is verified, which shows the superiority and effectiveness of NCPSO algorithm in optimizing operation of microgrid clusters.

关键词

微电网 / 优化运行 / 调度 / 小生境混沌粒子群优化算法 / 动态电价

Key words

microgrid / optimization / scheduling / NCPSO algorithm / dynamic pricing

引用本文

导出引用
陈友芹, 蒋炯, 殷展翔, 潘庭龙. 基于NCPSO的微网群优化调度策略研究[J]. 太阳能学报. 2022, 43(8): 477-483 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1287
Chen Youqin, Jiang Jiong, Yin Zhanxiang, Pan Tinglong. RESEARCH ON OPTIMAL SCHEDULING STRATEGY OF MICROGRID CLUSTERS BASED ON NCPSO[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 477-483 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1287
中图分类号: TM732   

参考文献

[1] PU Y C,LI Q, CHEN W R, et al.Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system[J]. International journal of hydrogen energy, 2019, 44(11): 5153-5161.
[2] 吴红斌, 孙瑞松, 蔡高原. 多微网互联系统的动态经济调度研究[J]. 太阳能学报, 2018, 39(5): 1426-1433.
WU H B, SUN R S, CAI G Y.Research on dynamic economic scheduling of multi microgrid interconnected system[J]. Acta energiae solaris sinica,2018,39(5):1426-1433.
[3] LONG B, JEONG T W, LEE J D, et al.Energy management of a hybrid AC-DC micro-grid based on a battery testing system[J]. Energies, 2015, 8(2): 1181-1194.
[4] KERDPHOL T,QUDAIH Y,MITANI Y.Optimal battery energy storage size using particle swarm optimization for microgrid system[J]. International review of electrical engineering(IREE), 2015, 10(2): 277.
[5] LIU W X, NIU S Y,XU H T.Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system[J]. Journal of modern power systems & clean energy, 2017, 5(2): 177-186.
[6] LI P,XU D, ZHOU Z Y, et al.Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization[J]. IEEE transactions on smart grid, 2017, 7(1): 66-73.
[7] TAN Y,CAO Y J,LI C B,et al.Microgrid stochastic economic load dispatch based on two-point estimate method and improved particle swarm optimization[J]. International transactions on electrical energy systems, 2014, 25(10): 2144-2164.
[8] 邹玙琦, 杨国华, 郑豪丰, 等. 基于改进小生境PSO算法的综合能源系统调度[J]. 电力系统及其自动化学报,2020, 32(7): 47-52, 60.
ZOU Y Q, YANG G H, ZHENG H F, et al.Integrated energy system scheduling based on improved niche PSO algorithm[J]. Proceedings of the CSU-EPSA, 2020, 32(7): 47-52, 60.
[9] 张少明, 盛四清. 基于改进粒子群算法的微网优化运行[J]. 中国电力, 2020, 53(5): 24-31.
ZHANG S M, SHENG S Q.Optimal operation of microgrid based on IPSO algorithm[J]. Electric power, 2020, 53(5): 24-31.
[10] HAN Y, ZHANG G R, LI Q, et al.Hierarchical energy management for PV/hydrogen/battery island DC microgrid[J]. International journal of hydrogen energy, 2019, 44(11): 5507-5516.
[11] 尹骁骐, 丁明. 基于多代理系统的快速分布式微网经济调度方法[J]. 太阳能学报, 2020, 41(3): 149-157.
YIN X Q, DING M.A fast distributedmicro network economic scheduling method based on multi agent system[J]. Acta energiae solaris sinica, 2020, 41(3): 149-157.
[12] MA W J, WANG J, LU X, et al.Optimal operation mode selection for a DC microgrid[J]. IEEE transactions on smart grid, 2017, 7(6): 2624-2632.
[13] LIU G, XU Y, TOMSOVIC K.Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization[J]. IEEE transactions on smart grid, 2017, 7(1): 227-237.

基金

国家自然科学基金(61672266)

PDF(1616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/