酸性溴化锂熔盐水合物溶解木质素的实验研究

宋晓敏, 徐文彪, 李亚茹, 段喜鑫, 时君友, 李翔宇

太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 469-473.

PDF(1644 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1644 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (3) : 469-473. DOI: 10.19912/j.0254-0096.tynxb.2020-1298

酸性溴化锂熔盐水合物溶解木质素的实验研究

  • 宋晓敏, 徐文彪, 李亚茹, 段喜鑫, 时君友, 李翔宇
作者信息 +

EXPERIMENT STUDY ON DISSOLVED LIGNIN IN ACID LITHIUM BROMIDE FUSED SALT HYDRATE

  • Song Xiaomin, Xu Wenbiao, Li Yaru, Duan Xixin, Shi Junyou, Li Xiangyu
Author information +
文章历史 +

摘要

以溴化锂对木质素的溶解为研究基础,研究溴化锂浓度及反应温度对纯化后酸性玉米芯木质素溶解性能的影响,使用傅里叶红外光谱仪(FTIR)表征溶解前后木质素的官能团,得出最适合溶解木质素的条件:溴化锂浓度为60%,反应温度为120 ℃最适合木质素溶解;酸性溴化锂熔盐水合物能选择性裂解木质素β—O—4芳基醚键,木质素的α—OH在溴化锂作用下发生溴化,从而在温和条件下导致部分木质素发生溶解,并且LiBr和HCl在催化醚键中起到重要作用。

Abstract

To lignin with lithium bromide as the research foundation, the dissolution of the lithium bromide concentration and reaction temperature on the properties of lignin dissolved acid purified cod, using Fourier infrared spectrometer (FTIR) characterization of dissolved lignin before and after functional group, it is concluded that the most suitable for the conditions of the dissolved lignin: lithium bromide concentration is 60%, the reaction temperature is 120 ℃ is most suited to lignin dissolved. Acid lithium bromide molten salt hydrate can selectively crack lignin β—O—4 aryl ether bonds. The bromination of α—OH of lignin under the action of lithium bromide leads to partial dissolution of lignin under mild conditions. LiBr and HCl play an important role in catalytic ether bonds.

关键词

木质素 / 溴化锂 / 溶解 / 芳基醚键 / 催化

Key words

lignin / lithium bromide / dissolve / aryl ether bond / catalysis

引用本文

导出引用
宋晓敏, 徐文彪, 李亚茹, 段喜鑫, 时君友, 李翔宇. 酸性溴化锂熔盐水合物溶解木质素的实验研究[J]. 太阳能学报. 2022, 43(3): 469-473 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1298
Song Xiaomin, Xu Wenbiao, Li Yaru, Duan Xixin, Shi Junyou, Li Xiangyu. EXPERIMENT STUDY ON DISSOLVED LIGNIN IN ACID LITHIUM BROMIDE FUSED SALT HYDRATE[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 469-473 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1298
中图分类号: TK6   

参考文献

[1] 汤潜潜. 木质素的应用研究进展[J]. 内江科技, 2020, 41(5): 118-119, 65.
TANG Q Q.Progress of applied research on lignin[J]. Neijiang science and technology, 2020, 41(5): 118-119, 65.
[2] BUGG T D, RAHMANPOUR R.Enzymatic conversion of lignin into renewable chemicals[J]. Current opinion in chemical biology, 2015, 29: 10-17.
[3] 谢宜彤, 郭鑫, 吕艳娜, 等. 低共熔溶剂在木质纤维原料溶解及其组分分离中的研究进展[J]. 林产化学与工业, 2019, 39(5): 11-18.
XIE Y T, GUO X, LYU Y N, et al.Research progress of low-eutectic solvent in the dissolution and separation of ligninfiber raw materials[J]. Chemistry and industry of forest products, 2019, 39(5): 11-18.
[4] 陈帅全, 张驰, 王印, 等. 碱热处理生物质碳源材料比选研究[J]. 森林工程, 2020, 36(5): 99-105.
CHEN S Q, ZHANG C, WANG Y, et al.Comparative study on biomass carbon source materials for alkali heat treatment[J]. Forest engineering, 2020, 36(5): 99-105.
[5] KÜHNEL I, PODSCHUN J, SAAKE B, et al. Synthesis of lignin polyols via oxyalkylation with propylene carbonate[J]. Holzforschung international journal of the biology, 2015, 69(5): 531-538.
[6] KAMM B, KAMM M.Principles of biorefineries[J]. Applied microbiology & biotechnology, 2004, 64(2): 137-145.
[7] CHENG S N, YUAN Z S, LEICH M, et al.Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesiveswith the depolymerized lignin as a substitute for phenol at a high substitution ratio[J]. Industrial crops & products, 2013, 44(44): 315-322.
[8] DENG W, KENNEDY J R, TSILOMELEKIS G, et al.Cellulose hydrolysis in acidified LiBr molten salt hydrate media[J]. Industrial & engineering chemistry research, 2015, 54: 5226-5236.
[9] 马光路, 吕建波, 曹青. 玉米秸秆中木质素、半纤维素和纤维素的组分分离研究[J]. 中国农业科技导报, 2015, 17(6): 70-79.
MA G L, LYU J B, CAO Q.Separation of lignin, hemicellulose and cellulose from corn straw[J]. Journal of agricultural science and technology, 2015, 17(6): 70-79.
[10] YANG X H, LI N, LIN X L, et al.Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions[J]. Journal of agricultural & food chemistry, 2016, 64(44): 8379-8387.
[11] DECNE C W, LIN S Y.Methods in lignin chemistry[M]. Berlin, Heidelberg: Springer, 1992.
[12] 熊犍, 叶君, 赵星飞. 纤维素在ZnCl2水溶液中的溶解性能及再生结构[J]. 华南理工大学学报(自然科学版), 2010, 38(2): 23-27.
XIONG J, YE J, ZHAO X F.Solubility and regeneration structure of cellulose in ZnCl2 aqueous solution[J]. Journal of South China University of Technology(natural science), 2010, 38(2): 23-27.
[13] 龙金星, 徐莹, 王铁军, 等. 木质素催化解聚与氢解[J].新能源进展, 2014, 2(2): 83-88.
LONG J X, XU Y, WANG T J, et al.Lignin catalyzed polymerization and hydrolyzation[J]. New energy progress,2014, 2(2): 83-88.
[14] 张斌, 武书彬, 阴秀丽, 等. 酸水解木质素的结构及热解产物分析[J]. 太阳能学报, 2011, 32(1): 19-24.
ZHANG B, WU S B, YIN X L, et al.Structure and pyrolysis analysis of acid hydrolyzed lignin[J]. Acta energiae solaris sinica, 2011, 32(1): 19-24.

基金

吉林省科技厅中青年科技创新领军人才及团队(20200301046RQ); 国家留学基金

PDF(1644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/