废弃物干酒糟生物质热解特性及动力学研究

徐青, 彭伟超, 杨威, 凌长明

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 424-429.

PDF(1959 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1959 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 424-429. DOI: 10.19912/j.0254-0096.tynxb.2020-1299

废弃物干酒糟生物质热解特性及动力学研究

  • 徐青, 彭伟超, 杨威, 凌长明
作者信息 +

STUDY ON BIOMASS PYROLYSIS CHARACTERIZATION AND KINETICS OF WASTE DRIED DISTILLER’S GRAINS

  • Xu Qing, Peng Weichao, Yang Wei, Ling Changming
Author information +
文章历史 +

摘要

酒糟(DG)的组成成分以及在50~900 ℃范围内的热解进行研究。TG/DTG实验结果表明,DG的开始热解温度为137 ℃,热解温度在305 ℃时热解速率最快,为6%/min。傅里叶变换红外光谱(FTIR)数据表明,DG的主要气态产物为CO2、CH4、酮、醛、酸和胺。通过分布式活化能模型(DAEM)与无模型积分(Flynn-Wall-Ozawa,FWO)方法对DG的动力学行为分析发现,DG在热解初始阶段活化能为76.49 kJ/mol,平稳阶段活化能为160 kJ/mol。随着热解反应的进行,DG的热解活化能逐渐升高。

Abstract

By studying the composition of Distiller’s grains and its pyrolysis in the temperature range of 50-900 °C, the TG/DTG results show that the initial pyrolysis temperature of DG is 137 ℃ and the fastest pyrolysis rate of 6%∙min-1 is obtained at a pyrolysis temperature of 305 ℃. 3D-FTIR data shows that the main gaseous products of DG are CO2, CH4, ketones, aldehydes, acids and amines. The kinetic behavior of DG was analyzed by the Distributed Activation Energy Model (DAEM) and Flynn-Wall-Ozawa (FWO) method, which showed that the activation energy of DG was 76.49 kJ/mol at the initial stage of pyrolysis and 160 kJ/mol at the steady stage.

关键词

生物质 / 热解 / 热重分析 / 活化能 / 酒糟

Key words

biomass / pyrolysis / thermogravimetric analysis / activation energy / distiller's grains

引用本文

导出引用
徐青, 彭伟超, 杨威, 凌长明. 废弃物干酒糟生物质热解特性及动力学研究[J]. 太阳能学报. 2022, 43(7): 424-429 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1299
Xu Qing, Peng Weichao, Yang Wei, Ling Changming. STUDY ON BIOMASS PYROLYSIS CHARACTERIZATION AND KINETICS OF WASTE DRIED DISTILLER’S GRAINS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 424-429 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1299
中图分类号: TK6   

参考文献

[1] BRANCA C, BLASI C.Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles(DDGS) and pyrolysis char under kinetic control[J]. Fuel processing technology, 2015, 129: 67-74.
[2] VILLEGAS-TORRES M F, WARD J M, LYE G J. The protein fraction from wheat-based dried distiller’s grain with solubles (DDGS): extraction and valorization[J]. New biotechnology, 2015, 32(6): 606-611.
[3] XU Q, PENG W C, LING C M.An experimental analysis of soybean straw combustion on both co and nox emission characteristics in a tubular furnace[J]. Energies, 2020, 13: 1587-1598.
[4] 宋飞跃, 丁浩植, 张立强, 等. 生物质三组分混合热解耦合作用研究[J]. 太阳能学报, 2019, 40(1): 149-156.
SONG F Y, DING H Z, ZHANG L Q, et al.Research on pyrolysis of mixture of biomass components[J]. Acta energiae solaris sinica, 2019, 40(1): 149-156.
[5] NAROBE M, GOLOB J, KLINAR D, et al.Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances[J]. Bioresource technology, 2014, 162: 21-29.
[6] MULLEN C, HICKS K, GOLDBERG N.Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams[J]. Energy & fuels, 2010, 24(1): 699-706.
[7] 马培勇, 孙亚栋, 邢献军, 等. 粒径对棉秆成型颗粒热解动力学特性的影响[J]. 太阳能学报, 2016, 37(5):1308-1314.
MA P Y, SUN Y D, XING X J, et al, Effects of particle size on pyrolysis kinetics characteristics of cotton stalk briquette[J]. Acta energiae solaris sinica, 2016, 37(5): 1308-1314.
[8] CHEN L, YU Z S, LIANG J Y, et al.Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS[J]. Energy conversion and management, 2018, 177: 582-591.
[9] GIUNTOLI J, GOUT J, VERKOOIJEN A H M, et al. Characterization of Fast pyrolysis of dry distiller’s grains (DDGS) and palm kernel cake using a heated foil reactor: nitrogen chemistry and basic reactor modeling[J]. Industrial & engineering chemistry research, 2011, 50: 4286-4300.
[10] 郭帅, 衣雪, 车德勇, 等. 钠盐对玉米秸秆热解气生成规律影响及反应动力学分析[J]. 农业工程学报, 2019, 35(20): 235-241.
GUO S, YI X, CHE D Y, et al.Effects of Na-containing salts on releasing and kinetic characteristics of gas phase products during corn stover pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 235-241.
[11] 贾春霞, 于皓, 巩时尚, 等. 印尼油砂热重红外及基于AKTS动力学分析[J]. 化工进展, 2018, 37(10): 3806-3817.
JIA C X, YU H, GONG S S, et al.Thermogravimetric Fourier infrared and kinetic analysis of Indonesian oil sands based on AKTS[J]. Chemical industry and engineering progress, 2018, 37(10): 3806-3817.
[12] IOELOVICH M.Methods for determination of chemical composition of plant biomass[J]. Sita, 2015, 17: 208-214.
[13] REN X Y, CAI H Z, CHANG J M, et al.TG-FTIR study on the pyrolysis properties of lignin from different kinds of woody biomass[J]. Paper and biomaterials, 2018, 3(2): 1-7.
[14] CAI J, WU W, LIU R, et al.A distributed activation energy model for the pyrolysis of lignocellulosic biomass[J]. Green chemistry, 2013, 15(5): 1331-1340.

基金

广东省教育厅创新强校工程项目(2019KTSCX058)

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/