采用Jensen尾流模型来描述风电机组间尾流的干扰效应。首先基于网格化的改进遗传算法获得风电机组的数量和布局初始位置,再通过坐标化遗传算法对风电机组位置进行进一步调整优化,从而提高单位成本的发电量。根据所提出的方法,在3种不同的风场(定风向定风速、定风速变风向和变风速变风向)下,针对2 km×2 km的标准风场区域进行风电机组布局优化,再将其应用到不规则的实际案例,对比分析表明所提出的方法能有效提高发电量。
Abstract
In this paper,Jensen's wake model is adopted to describe the interference effect of the wake among wind turbines. The number of wind turbines and the initial position of the layout are obtained based on the improved grid genetic algorithm,then the coordinated genetic algorithm is used to further optimize the position of the wind turbines,thereby increasing the power generation per unit cost. With the proposed method,three different wind scenarios (single wind direction,multiple wind directions with constant intensity and multiple wind directions with various intensities) are considered and the turbine layout optimization was carried out for the standard 2 km×2 km wind farm and the irregular wind farm. Comparative analysis shows that the proposed method can effectively increase power generation.
关键词
优化 /
遗传算法 /
风电场 /
网格 /
坐标 /
不规则区域
Key words
optimization /
genetic algorithm /
wind farm /
grid /
coordinate /
irregular area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李俊峰. 风光无限,中国风电发展报告2011[M]. 北京:中国环境科学出版社, 2011: 1-112.
LI J F.China wind power outlook 2011[M]. Beijing: China Environmental Press, 2011: 1-112.
[2] SANDERSE B.Aerodynamics of wind turbine wakes Literature review[R]. Technical Report ECN-E-09-016, 2009.
[3] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al.Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind energy, 2010, 12(5): 431-444.
[4] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering & industrial aerodynamics, 1994, 51(1): 105-116.
[5] GRADY S A, HUSSAINI M Y, ABDULLAH M.Placement of wind turbines using genetic algorithms[J]. Renew energy, 2005, 30(1): 259-270.
[6] MITTAL A.Optimization of the layout of large wind farms using a genetic algorithm[C]//International Mechanical Engineering Congress & Exposition, Texas, USA, 2012.
[7] HASSOINE M A, LAHLOU F, ADDAIM A, et al.Wind farm layout optimization using real coded multi-population genetic algorithm[C]//International Conference on Wireless Technologies, Embedded and Intelligent Systems, USMBA Univ, ESNA Fez, ERSI & IPI Lab, Fez, MOROCCO, 2019.
[8] CHEN Y, LI H, HE B, et al.Multi-objective genetic algorithm based innovative wind farm layout optimization method[J]. Energy conversion and management, 2015, 105: 1318-1327.
[9] LIU F, WANG Z F.Offshore wind farm layout optimization using adapted genetic algorithm:a different perspective[J]. Electrical and computer engineering, 2014, 103(3): 917-922.
[10] YANG Q S, HU J X, LAW S.Optimization of wind farm layout with modified genetic algorithm based on boolean code[J]. Journal of wind engineering and industrial aerodynamics, 2018, 181: 61-68.
[11] EROGLU Y, SECKINER S U.Design of wind farm layout using ant colony algorithm[J]. Renewable energy, 2012, 44: 53-62.
[12] BILBAO M, ALBA E.Simulated annealing for optimization of wind farm annual profit[C]//International Symposium on Logistics and Industrial Informatics, Linz, Austria, 2009.
[13] BEATRIZ P, ROBERTO M, RAUL G.Offshore wind farm layout optimization using mathematical programming techniques[J]. Renewable energy, 2013, 53: 389-399.
[14] 刘永前, 邵振州, 颜灵伟, 等. 基于改进二进制萤火虫算法的风电场微观选址优化研究[J]. 可再生能源, 2019, 37(1): 112-119.
LIU Y Q, SHAO Z Z, YAN L W, et al.Study on micro-location optimization of wind farm based on improved binary firefly algorithm[J]. Renewable energy, 2019, 37(1): 112-119.
[15] 张炜. 基于改进粒子群优化算法与风速分布回归函数法的复杂地形风电场优化布置方法[J]. 水电能源科学, 2016, 34(1): 190-194.
ZHANG W.An optimized wind farm layout method for complex terrain based on improved particle swarm optimization algorithm and wind speed distribution regression function method[J]. Water resources and power, 2016, 34(1): 190-194.
[16] PARK J, LAW K H.Layout optimization for maximizing wind farm power production using sequential convex programming[J]. Applied energy, 2015, 151: 320-334.
[17] JENSEN N O.A note of wind generator interaction[M]. RISO National Laboratory: Roskilde Denmark, 1983: 241-259.
[18] KATIC I, HJSTUP J, JENSEN N O.A simple model for cluster efficiency Rome[J]. European wind energy association conference and exhibition, 1986, 53(1): 407-410.
[19] 罗超. 3 MW海上风电机抗台风特性研究[D]. 厦门: 集美大学,2014.
LUO C.Study on typhoon resistant characteristics of 3 MW offshore wind turbine[D]. Xiamen: Jimei University, 2014.
基金
国家自然科学基金(52178456); 111引智基地项目(B18062)