为了研究不同运行工况条件下的换热特性,利用分段集总参数法搭建流化床固体颗粒/sCO2换热器的仿真数学模型,并对换热系统在不同输入变量扰动下的动态特性及对关键参数的敏感性进行分析和研究。结果表明:换热系统输入侧入口温度的扰动对换热器输出温度的影响幅度较大,而输入侧质量流量的扰动对输出温度的影响较小;小管径和低管数有利于获得较高的sCO2侧换热系数;同时,在符合最小流化条件下,小粒径和较低的流化气体速度有利于颗粒侧传热系数的提高。
Abstract
In order to study the heat transfer characteristics under different operating conditions, a model of fluidized-bed solid particle/sCO2 heat exchanger is established by using the multi-section lumped parameter method in this paper, and the dynamic characteristics of the heat transfer system under the disturbances of different input variables are studied. Besides, the sensitivity of system performance to the key parameters is also analyzed. The results show that the disturbance of inlet temperature of the heat exchange system has a large influence on the outlet temperature of the heat exchanger, while the mass flow rate on the input side has a small influence; Small tube dimension and low tube number are easy to obtain a higher heat transfer coefficient for sCO2 side. In addition, the small particle size and the lower fluidizing-gas velocity are conducive to the improvement of the particle-side heat transfer coefficient under the minimum fluidization condition.
关键词
太阳能热发电 /
固体颗粒 /
超临界二氧化碳 /
换热器 /
集总参数法
Key words
solar thermal power /
solid particle /
sCO2 /
heat exchanger /
lumped parameter method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨天锋, 陈金利, 杨嘉敏, 等. 基于太阳能布雷顿循环的多能互补发电系统动态特性研究[J]. 太阳能学报, 2021, 42(11): 193-200.
YANG T F, CHEN J L, YANG J M, et al.Study on dynamic characteristics of multi-energy system based on solar Brayton cycle[J]. Acta energiae solaris sinica, 2021, 42(11): 193-200.
[2] 裘闰超. 基于超临界CO2布雷顿循环的塔式太阳能光热系统模拟研究[D]. 杭州: 浙江大学, 2018.
QIU R C.Simulation study on solar power tower system based on supercritical CO2 Brayton cycle[D]. Hangzhou:Zhejiang University, 2018.
[3] 曹传胜. 塔式太阳能热发电站性能的影响因素研究[J]. 太阳能学报, 2020, 41(10): 223-228.
CAO C S.Investigation of influence factors on performance of solar tower power station[J]. Acta energiae solaris sinica, 2020, 41(10): 223-228.
[4] ALBRECHT K, HO C K.Heat transfer models of moving packed-bed particle-to-sCO2 heat exchangers[J]. Journal of solar energy engineering, 2018, 141: 1-10.
[5] GOMEZ-GARCIA F, GAUTHIER D, FLAMANT G.Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage[J]. Applied energy, 2017, 190: 510-523.
[6] FARSI A, DINCER I.Thermodynamic assessment of a hybrid particle-based concentrated solar power plant using fluidized bed heat exchanger[J]. Solar energy, 2019, 179: 236-248.
[7] 张一帆, 李红智, 杨玉, 等. 垂直上升加热管道内超临界二氧化碳流动不稳定性研究[J]. 热力发电, 2020, 49(10): 65-72.
ZHANG Y F, LI H Z, YANG Y, et al.Research on flow instability of supercritical carbon dioxide in a vertical upward heated tube[J]. Thermal power generation, 2020, 49(10): 65-72.
[8] 颜建国, 朱凤岭, 郭鹏程, 等. 超临界CO2在内凸管内对流传热强化试验研究[J]. 太阳能学报, 2020, 41(7): 244-250.
YAN J G, ZHU F L, GUO P C, et al.Experimental study on heat transfer enhancement of supercritical CO2 flowing in an inner convex tube[J]. Acta energiae solaris sinica, 2020, 41(7): 244-250.
[9] MARCHIONNI M, CHAI L, BIANCHI G, et al.Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles[J]. Energy procedia, 2019, 161: 472-479.
[10] MA Z W, MARTINEK J.Fluidized-bed heat transfer modeling for the development of particle/supercritical-CO2 heat exchanger[C]//International Conference on ASME International Conference on Energy Sustainability Collocated with the ASME Power Conference Joint with Icope, Charlotte, North Carolina, USA, 2017.
[11] BELL I H, WRONSKI J, QUOILIN S, et al.Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop[J]. Industrial and engineering chemistry research, 2014, 53(6): 2498-2508.
[12] HARRIOTT P, BARNSTONE L A.Heat transfer in fluidized beds[J]. Industrial and engineering chemistry, 1967, 59(4): 55-58.
[13] MYASNIKOV V P, ROZHDESTVENSKAYA M S.Heat transfer between a surface and a fluidized bed: consideration of pressure and temperature effects[J]. Journal of applied mechanics and technical physics, 1991, 9(6): 762-768.
[14] CHEN J C, GRACE J R, GOLRIZ M R.Heat transfer in fluidized beds: design methods[J]. Powder technology, 2005, 150: 123-132.
[15] THEODORE L B, LAVINE A S.Fundamentals of heat and mass transfer[M]. 8th ed. New York: John Wiley & Sons, 2015: 474-476.
基金
超临界CO2太阳能热发电关键基础问题研究(2018YFB1501005); 北京市面上太阳能热发电流化床固体颗粒/sCO2换热器气-固传热特性与强化机理研究(3222033); 中国科学院青年创新促进会项目