基于多目标优化和误差修正的短期风速预测

李嘉文, 盛德仁, 李蔚, 陈坚红

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 273-280.

PDF(1326 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1326 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 273-280. DOI: 10.19912/j.0254-0096.tynxb.2020-1312

基于多目标优化和误差修正的短期风速预测

  • 李嘉文, 盛德仁, 李蔚, 陈坚红
作者信息 +

SHORT-TERM WIND SPEED PREDICTION BASED ON MULTI-OBJECTIVE OPTIMIZATION AND ERROR CORRECTION

  • Li Jiawen, Sheng Deren, Li Wei, Chen Jianhong
Author information +
文章历史 +

摘要

提出一种多目标优化、误差修正的短期风速混合预测模型。首先对原始风速数据进行分解,降低序列的非线性,利用一种有效的多目标优化算法优化ELM神经网络,保证预测精度和稳定性。最后采用深度学习网络LSTM对初始预测结果进行误差校正,为克服超参数选取困难,利用乌鸦算法对层神经元数量进行优化。以中国华中某风电场实际数据为例进行分析,结果表明该方法具有较高的预测精度。

Abstract

This paper presents a multi-objective optimization and error correction model for short-term wind speed prediction. Firstly, decompose the original wind speed data to reduce the nonlinearity of the sequence. An effective multi-objective optimization algorithm is used to optimize the ELM neural network, which ensures the accuracy and stability of the prediction. Finally, the deep learning network LSTM is used to correct the error of the initial prediction results. In order to overcome the difficulty of super parameter selection, crow algorithm is used to optimize the number of neurons in layer. An example is given to analyze the data of a wind farm in central China, and the results show that the method has high prediction accuracy.

关键词

风速 / 预测 / 多目标优化 / 误差修正 / 深度学习

Key words

wind speed / prediction / multi-objective optimization / error correction / deep learning

引用本文

导出引用
李嘉文, 盛德仁, 李蔚, 陈坚红. 基于多目标优化和误差修正的短期风速预测[J]. 太阳能学报. 2022, 43(8): 273-280 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1312
Li Jiawen, Sheng Deren, Li Wei, Chen Jianhong. SHORT-TERM WIND SPEED PREDICTION BASED ON MULTI-OBJECTIVE OPTIMIZATION AND ERROR CORRECTION[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 273-280 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1312
中图分类号: TK513.5   

参考文献

[1] 国家能源局. 2019年可再生能源并网运行情况[EB/OL]. http://www.nea.gov.cn/2020-03/06/c_138850234.htm.
[2] MA Z R, CHEN H W, WANG J J, et al.Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction[J]. Energy conversion and management, 2020, 205: 112345.
[3] TIAN C S, HAO Y, HU J M.A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization[J]. Applied energy, 2018, 231: 301-319.
[4] ZHAO J, GUO Z H, SU Z Y, et al.An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed[J]. Applied energy, 2016, 162: 808-826.
[5] YUNUS K, THIRINGER T, CHEN P Y.ARIMA-based frequency-decomposed modeling of wind speed time series[J]. IEEE trans actions on power syst ems, 2016, 31(4): 2546-2556.
[6] WANG J Z, WANG S Q, YANG W D.A novel non-linear combination system for short-term wind speed forecast[J]. Renewable energy, 2019, 143: 1172-1192.
[7] 杨磊, 黄元生, 张向荣, 等. 基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究[J]. 电力系统保护与控制, 2020, 48(10): 81-90.
YANG L, HUANG Y S, ZHANG X R, et al.Research on short-term wind speed hybrid variable weight prediction model based on ensemble empirical mode decomposition and LASSO algorithm[J]. Power system protection and control, 2020, 48(10): 81-90.
[8] SUN S L, QIAO H, WEI Y J, et al.A new dynamic integrated approach for wind speed forecasting[J]. Applied energy, 2017, 197: 151-162.
[9] WANG J Z, YANG W D, DU P, et al.A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm[J]. Energy conversion and management, 2018, 163: 134-150.
[10] 姚万业, 黄璞, 姚吉行, 等. 一种基于深度学习的FRS-CLSTM风速预测模型[J]. 太阳能学报, 2020, 41(9): 324-330.
YAO W Y, HUANG P, YAO J X, et al.A FAS-CISM wind speed prediction model based on deep learning[J]. Acta energiae solaris sinica, 2020, 41(9): 324-330.
[11] LIUMS, CAO Z M ZHANG J, et al. Short-term wind speed forecasting based on the Jaya-SVM model[J]. International journal of electrical power & energy systems, 2020, 121: 106056.
[12] YEN R, SUGANTHAN P N, SRIKANTH N.A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods[J]. IEEE transactions on sustainable energy, 2015, 6(1): 236-244.
[13] LIU Z K, JIANG P, ZHANG L F, et al.A combined forecasting model for time series: application to short-term wind speed forecasting[J]. Applied energy, 2020, 259: 114137.
[14] NI K L, WANG J Z, TANG G Y, et al.Research and application of a novel hybrid model based on a deep neural network for electricity load forecasting: A case study in Australia[J]. Energies, 2019, 12(13): 1-30.
[15] HAO Y, TIAN C S.The study and application of a novel hybrid system for air quality early-warning[J]. Applied soft computing, 2019, 74: 729-746.
[16] YANG W D, WANG J Z, NIU T, et al.A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting[J]. Applied energy, 2019, 235: 1205-1225.
[17] 鲁迪, 王星华, 贺小平. 基于混合粒子群算法和多分位鲁棒极限学习机的短期风速预测方法[J]. 电力系统保护与控制, 2019, 47(5): 123-130.
LU D, WANG X H, HE X P.Hybrid population particle algorithm and multi-quantile robust extreme learning machine based short-term wind speed forecasting[J]. Power system protection and control, 2019, 47(5): 123-130.
[18] SANTHOSH M, VENKAIAH C, KUMAR D M V. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction[J]. Energy conversion and management, 2018, 168: 482-493.
[19] 蔡改贫, 宗路, 罗小燕, 等. 基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测研究[J]. 振动与冲击, 2019, 38(7): 136-141.
CAI G P, ZONG L, LUO X Y, et al.Prediction of ball mill's load based on IEDA-cloud model feature entropy and LSSVM[J]. Journal of vibration and shock, 2019, 38(7): 136-141.
[20] HUANG Y S, YANG L, LIU S J, et al.Multi-Step wind speed forecasting based on ensemble empirical mode decomposition, long short term memory network and error correction strategy[J]. Energies, 2019, 12(10): 1-22.
[21] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318.
YU X Y, ZHAO Y M, YANG NN, et al.Photovoltaic power generation forecasting based on VMD- SE-LSSVM and iterative error correction[J]. Acta energiae solaris sinica, 2020, 41(2): 310-318.
[22] LIU H, CHEN C.Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction[J]. Applied energy, 2019, 254: 113686.
[23] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[24] LIU H, WU H P, LI Y F.Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction[J]. Energy conversion and management, 2018, 161: 266-283.
[25] SUN W, LIU M H.Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China[J]. Energy Conversion and Management, 2016,114: 197-208.
[26] NGATCHOU P, ZAREI A, El-SHARKAWI A.Pareto multi- objective optimization[C]//Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, Arlington, VA, USA, 2006.
[27] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al.Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in engineering software, 2017, 114: 163-191.
[28] DU P, WANG J Z, YANG W D, et al.A novel hybrid model for short-term wind power forecasting[J]. Applied soft computing, 2019, 80: 93-106.
[29] LIU H, MI X W, LI Y F, et al.Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short-term memory neural network and Elman neural network[J]. Energy conversion and management, 2018, 156: 498-514.
[30] ASKARZADEH A.A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers & structures, 2016, 169: 1-12.
[31] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-Convolutional Network[J]. Energy, 2019, 189: 116225.
[32] MIRJALILI S, SAREMI S, MIRJALILI S M, et al.Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert systems with applications, 2016, 47: 106-119.

PDF(1326 KB)

Accesses

Citation

Detail

段落导航
相关文章

/